Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(3): e0296911, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427679

RESUMO

Nepal's poultry industry has experienced remarkable growth in the last decade, but farm biosafety and biosecurity measures are often overlooked by farmers. As a result, farms often suffer from sporadic and regular outbreaks of many diseases, impacting production and creating public health challenges. Poor management practices, including overuse of antibiotics for prophylaxis and therapeutics, can enhance the spread of poultry diseases by propagating antimicrobial resistance (AMR) that is threatening poultry and human health. We assessed biosafety, biosecurity risks and AMR stewardship in sixteen poultry farms located in four districts: Ramechhap, Nuwakot, Sindhupalchowk, and Kavre. Risk assessment and AMR stewardship evaluation questionnaires were administered to formulate biosafety and biosecurity compliance matrix (BBCM). Risk assessment checklist assessed facility operations, personnel and standard operating procedures, water supply, cleaning and maintenance, rodent/pest control and record keeping. Oral and cloacal samples from the poultry were collected, pooled, and screened for eight poultry pathogens using Polymerase Chain Reaction (PCR) tests. Based on BBCM, we identified the highest BBCM score of 67% obtained by Sindhupalchowk farm 4 and the lowest of 12% by Kavre farm 3. Most of the farms (61.6%) followed general poultry farming practices, only half had clean and well-maintained farms. Lowest scores were obtained for personnel safety standard (42.4%) and rodent control (3.1%). At least one of the screened pathogens were detected in all farms. Mycoplasma gallisepticum was the most common pathogen detected in all but three farms, followed by Mycoplasma synoviae. More than half of the farmers considered AMR a threat, over 26% of them used antibiotics as a preventive measure and 81% did not consider withdrawal period for antibiotics prior to processing of their meat products. Additionally, antibiotics classified as "Watch" and "Restrict" by the WHO were frequently used by the farmers to treat bacterial infections in their farms.


Assuntos
Gestão de Antimicrobianos , Aves Domésticas , Animais , Humanos , Fazendas , Projetos Piloto , Contenção de Riscos Biológicos , Biosseguridade , Antibacterianos/uso terapêutico , Nepal
2.
Sci Rep ; 13(1): 9262, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37286625

RESUMO

Nepal is an endemic country for dengue infection with rolling of every 3 year's clear cyclic outbreaks with exponential growth since 2019 outbreak and the virus gearing towards the non-foci temperate hill regions. However, the information regarding circulating serotype and genotype is not frequent. This research discusses on the clinical features, diagnosis, epidemiology, circulating serotype and genotype among 61 dengue suspected cases from different hospitals of Nepal during the window period 2017-2018 between the two outbreaks of 2016 and 2019. E-gene sequences from PCR positive samples were subjected to phylogenetic analysis under time to most recent common ancestor tree using Markov Chain Monte Carlo (MCMC) and BEAST v2.5.1. Both evolution and genotypes were determined based on the phylogenetic tree. Serotyping by Real-time PCR and Nested PCR showed the co-circulation of all the 3 serotypes of dengue in the year 2017 and only DENV-2 in 2018. Genotype V for DENV-1 and Cosmopolitan Genotype IVa for DENV-2 were detected. The detected Genotype V of DENV-1 in Terai was found close to Indian genotype while Cosmopolitan IVa of DENV-2 found spreading to geographically safe hilly region (now gripped to 9 districts) was close to South-East Asia. The genetic drift of DENV-2 is probably due to climate change and rapid viral evolution which could be a representative model for high altitude shift of the infection. Further, the increased primary infection indicates dengue venturing to new populations. Platelets count together with Aspartate transaminase and Aalanine transaminase could serve as important clinical markers to support clinical diagnosis. The study will support future dengue virology and epidemiology in Nepal.


Assuntos
Vírus da Dengue , Dengue , Humanos , Dengue/diagnóstico , Dengue/epidemiologia , Vírus da Dengue/genética , Filogenia , Nepal/epidemiologia , Surtos de Doenças , Sorogrupo , Genótipo
3.
Virol J ; 20(1): 117, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280624

RESUMO

Canine distemper is a highly contagious, often fatal disease caused by canine distemper virus (CDV) in domestic dogs and wild carnivores. The virus has caused mass epidemics in both wild and captive carnivores of high conservation value such as tigers, lions and leopards. Hence, understanding and managing CDV outbreaks is particularly important in Nepal, which is home to many species of threatened wild carnivores including tigers, leopards, snow leopards, dholes and wolves, and also contains a large population of stray dogs. Previous studies have suggested that CDV may pose a threat to wild carnivores, but there have not been any studies characterizing the genetic strains of the virus circulating in Nepal's carnivores. We collected invasive and non-invasive biological samples from stray dogs in Kathmandu Valley and genetically characterized the strains of CDV in the dogs to belong to the Asia-5 lineage by using phylogenetic analysis. The same lineage also contained CDV strains sequenced from dogs, civets, red panda and lions in India. Based on our phylogenetic analysis, we think it is likely that CDV is maintained through sylvatic cycle among sympatric carnivores allowing the recurring spillovers and outbreaks. It is crucial to prevent the virus transmission from reservoir hosts to other species, especially threatened populations of large carnivores in Nepal. Hence, we recommend for regular surveillance of CDV targeting wild carnivores in addition to the domestic dogs.


Assuntos
Carnívoros , Vírus da Cinomose Canina , Cinomose , Leões , Tigres , Animais , Cães , Vírus da Cinomose Canina/genética , Filogenia , Cinomose/epidemiologia
4.
Front Vet Sci ; 10: 1133823, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37303725

RESUMO

Introduction: Tuberculosis is an infectious disease caused by a group of acid-fast bacilli known as Mycobacterium tuberculosis complex (MTC), which has a major impact on humans. Transmission of MTC across the human-animal interface has been demonstrated by several studies. However, the reverse zoonotic transmission from humans to animals (zooanthroponosis) has often been neglected. Methods: In this study, we used Nanopore MinION and Illumina MiSeq approaches to sequence the whole genome of M. tuberculosis strains isolated from two deceased Asian elephants (Elephas maximus) and one human in Chitwan, Nepal. The evolutionary relationships and drug resistance capacity of these strains were assessed using the whole genome data generated by the stand-alone tool Tb-Profiler. Phylogenomic trees were also constructed using a non-synonymous SNP alignment of 2,596 bp, including 94 whole genome sequences representative of the previously described M. tuberculosis lineages from elephants worldwide (lineages 1 and 4) and from humans in Nepal (lineages 1, 2 and 3). Results and Discussion: The new genomes achieved an average coverage of 99.6%, with an average depth of 55.67x. These M. tuberculosis strains belong to lineage 1 (elephant DG), lineage 2 (elephant PK) and lineage 4 (human), and none of them were found to have drug-resistant variants. The elephant-derived isolates were evolutionarily closely related to human-derived isolates previously described in Nepal, both in lineages 1 and 2, providing additional support for zooanthroponosis or bidirectional transmission between humans and elephants. The human-derived isolate clustered together with other published human isolates from Argentina, Russia and the United Kingdom in the lineage 4 clade. This complex multi-pathogen, multi-host system is challenging and highlights the need for a One Health approach to tuberculosis prevention and control at human-animal interface, particularly in regions where human tuberculosis is highly endemic.

5.
PLoS One ; 18(3): e0270778, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36857401

RESUMO

Campylobacter spp. is often underreported and underrated bacteria that present real health risks to both humans and animals, including non-human primates. It is a commensal microorganism of gastrointestinal tract known to cause gastroenteritis in humans. Commonly found in many wild animals including non-human primates (monkeys- Rhesus macaques) these pathogens are known to be a common cause of diarrhea in humans in many parts of developing and under developed countries. Rhesus macaques from the two holy sites in Kathmandu (Pashupati and Swoyambhu) were included in this cross-sectional study. Diarrheal samples of monkeys were analyzed to detect and characterize the pathogen using 16S rRNA-based PCR screening, followed by DNA sequencing and phylogenetic analysis. Out of a total 67 collected diarrheal samples, Campylobacter spp. were detected in the majority of the samples (n = 64; 96%). DNA sequences of the amplified PCR products were successfully obtained from 13 samples. Phylogenetic analysis identified Candidatus Campylobacter infans (n = 10, Kimura-2 parameter (K2P) pairwise distance values of 0.002287). Remaining three sequences might potentially belong to a novel Campylobacter species/sub-species- closely relating to known species of C. helviticus (K2P pairwise distance of 0.0267). Both Candidatus Campylobacter infans and C. helvitucus are known to infect humans and animals. Additionally, we also detected the bacteria in water and soil samples from the sites. Campylobacter spp. caused the 2018 diarrhea outbreak in Rhesus macaques in the Kathmandu valley. Campylobacter might be one of the important contributing pathogens in diarrheal outbreaks-both in humans and animals (monkeys) in Nepal. Due to close interactions of these animals with humans and other animals, One Health approach might be the most effective way to prevent and mitigate the threat posed by this pathogen.


Assuntos
Campylobacter , Diarreia , Animais , Macaca mulatta , Estudos Transversais , Filogenia , RNA Ribossômico 16S , Surtos de Doenças
6.
PLoS One ; 18(3): e0283664, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36996055

RESUMO

Understanding disease burden and transmission dynamics in resource-limited, low-income countries like Nepal are often challenging due to inadequate surveillance systems. These issues are exacerbated by limited access to diagnostic and research facilities throughout the country. Nepal has one of the highest COVID-19 case rates (915 cases per 100,000 people) in South Asia, with densely-populated Kathmandu experiencing the highest number of cases. Swiftly identifying case clusters (hotspots) and introducing effective intervention programs is crucial to mounting an effective containment strategy. The rapid identification of circulating SARS-CoV-2 variants can also provide important information on viral evolution and epidemiology. Genomic-based environmental surveillance can help in the early detection of outbreaks before clinical cases are recognized and identify viral micro-diversity that can be used for designing real-time risk-based interventions. This research aimed to develop a genomic-based environmental surveillance system by detecting and characterizing SARS-CoV-2 in sewage samples of Kathmandu using portable next-generation DNA sequencing devices. Out of 22 sites in the Kathmandu Valley from June to August 2020, sewage samples from 16 (80%) sites had detectable SARS-CoV-2. A heatmap was created to visualize the presence of SARS-CoV-2 infection in the community based on viral load intensity and corresponding geospatial data. Further, 47 mutations were observed in the SARS-CoV-2 genome. Some detected mutations (n = 9, 22%) were novel at the time of data analysis and yet to be reported in the global database, with one indicating a frameshift deletion in the spike gene. SNP analysis revealed possibility of assessing circulating major/minor variant diversity on environmental samples based on key mutations. Our study demonstrated the feasibility of rapidly obtaining vital information on community transmission and disease dynamics of SARS-CoV-2 using genomic-based environmental surveillance.


Assuntos
COVID-19 , Esgotos , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/epidemiologia , Genômica
7.
PLoS One ; 18(3): e0280688, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36897867

RESUMO

Poultry (Gallus domesticus) farming plays an important role as an income generating enterprise in a developing country like Nepal, contributing more than 4% to the national Gross Domestic Product (GDP). Newcastle Disease (ND) is a major poultry disease affecting both commercial and backyard poultry production worldwide. There were more than 90 reported ND outbreaks in Nepal in 2018 with over 74,986 birds being affected. ND is responsible for over 7% of total poultry mortality in the country. Recent outbreaks of ND in 2021 affected many farms throughout Nepal and caused massive loss in poultry production. ND is caused by a single-stranded ribonucleic acid (RNA) virus that presents very similar clinical symptoms as Influenza A (commonly known as bird flu) adding much complexity to clinical disease identification and intervention. We conducted a nationwide ND and Influenza A (IA) prevalence study, collecting samples from representative commercial and backyard poultry farms from across the major poultry production hubs of Nepal. We used both serological and molecular assessments to determine disease exposure history and identification of strains of ND Virus (NDV). Of the 40 commercial farms tested, both NDV (n = 28, 70%) and IAV (n = 11, 27.5%) antibodies were detected in majority of the samples. In the backyard farms (n = 36), sero-prevalence of NDV and IAV were 17.5% (n = 7) and 7.5% (n = 3) respectively. Genotype II NDV was present in most of the commercial farms, which was likely due to live vaccine usage. We detected never reported Genotype I NDV in two backyard farm samples. Our investigation into 2021 ND outbreak implicated Genotype VII.2 NDV strain as the causative pathogen. Additionally, we developed a Tablet formulation of the thermostable I2-NDV vaccine (Ranigoldunga™) and assessed its efficacy on various (mixed) breeds of chicken (Gallus domesticus). Ranigoldunga™ demonstrated an overall efficacy >85% with a stability of 30 days at room temperature (25°C). The intraocularly administered vaccine was highly effective in preventing ND, including Genotype VII.2 NDV strain.


Assuntos
Influenza Humana , Doença de Newcastle , Doenças das Aves Domésticas , Animais , Humanos , Doença de Newcastle/prevenção & controle , Aves Domésticas , Nepal , Vírus da Doença de Newcastle/genética , Galinhas , Vacinas Atenuadas , Genótipo
8.
PLoS One ; 18(1): e0280412, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36656809

RESUMO

BACKGROUND: Excessive and irrational use of antibiotics as growth promoters in poultry has been one of key factors contributing to increased emergence of antibiotics resistant bacteria. Several alternatives for antibiotic growth promoters are being sought, and the search for effective probiotics to be used as feed additives is amongst the promising ones. Our study aimed to isolate and test potential probiotics bacteria from cloacal swabs of various indigenous chicken (Gallus domesticus) breeds from rural outskirts of the Kathmandu valley (Nepal). METHODS: Selective isolation of probiotics was conducted by micro-aerophilic enrichment of sample in MRS Broth at 37°C, followed by culturing on MRS agar supplemented with 5 g/L of CaCO3. Isolated bacterial colonies producing transparent halo were selected as potential lactic acid bacteria (LAB), and tested for their antibacterial activity, phenotypic and biochemical characteristics, acidic yield, and tolerance to acid and bile. RESULTS: A total of 90 potential LAB were isolated from cloacal samples collected from 41 free-ranging chickens of indigenous breeds. Of these, 52 LAB isolates (57%) showed variable antibacterial activity to at least one bacterial pathogen. Of 52 LAB, 46 isolates fulfilled phenotypic and biochemical criteria of Lactobacillus spp. Of these, 37 isolates produced varying percentage yields of lactic acid, 27 isolates showed survival at pH 3.0, and 17 isolates showed survival tolerances in the presence of 0.3% and 0.5% bile salts for 24 hours. Phylogenetic analysis of 16S rDNA sequencing of LAB isolates fulfilling in vitro probiotics properties showed that 3 isolates had genetic identity of 99.38% with Lactobacillus plantarum, while one isolate was genetically similar (99.85%) with the clade of L. reuteri, L. antri and L. panis. CONCLUSION: Our study identified four Lactobacillus spp. strains having potential probiotics properties. Further investigations are needed to evaluate these isolates to be used as poultry probiotics feed supplement.


Assuntos
Lactobacillales , Probióticos , Animais , Galinhas/microbiologia , Filogenia , Nepal , Lactobacillus , Antibacterianos/farmacologia , Aves Domésticas/genética , Ácidos/farmacologia , Probióticos/farmacologia , RNA Ribossômico 16S/genética
9.
Indian J Gastroenterol ; 39(4): 354-361, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-33037988

RESUMO

AIM: To analyze the serology and molecular markers of the hepatitis B-infected patients from the tertiary care hospital at Kathmandu in Nepal. METHODS: A total of 399 blood samples of patients from Sukraraj Tropical and Infectious Disease Hospital, Teku, Kathmandu, were collected. Samples were tested for HBsAg, HBeAg, and IgM anti-HBc using ELISA method. The samples were further categorized as acute and chronic. The genotyping was performed by real-time polymerase chain reaction (real-time PCR) and further validated by sequencing. RESULTS: Out of 399 samples that were collected, 271 and 128 samples were acute and chronic cases respectively. Fifty-six samples were genotyped by qPCR, out of which 40 samples belonged to genotype D, 4 to C/D recombinant, 5 to genotype C, 3 to genotype B, and 4 were genotype A respectively. From these, 15 samples were used for sequencing of P (polymerase) gene and S (surface) genes. Thus, obtained sequences were used to construct neighbor-joining tree using Tamura-Nei model evolution and further validated by Bayesian analysis. A total of four sub-genotypes namely A1, C1, D1, and D5 were detected. CONCLUSION: Hepatitis B virus infection is a global health problem affecting about 257 million people worldwide. In Nepal, there are few reports on the molecular and phylogenetic analysis of this virus. In this study, we report the circulation of seropositive occult hepatitis as well as CD-recombinant genotype in Nepalese population.


Assuntos
Antígenos de Superfície da Hepatite B/sangue , Antígenos E da Hepatite B/sangue , Vírus da Hepatite B/genética , Vírus da Hepatite B/imunologia , Hepatite B/diagnóstico , Hepatite B/virologia , Imunoglobulina M/sangue , Doença Aguda , Anticorpos Antivirais/sangue , Biomarcadores/sangue , Doença Crônica , Ensaio de Imunoadsorção Enzimática , Feminino , Genótipo , Técnicas de Genotipagem , Humanos , Masculino , Nepal , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Sorogrupo , Centros de Atenção Terciária
10.
PLoS One ; 15(7): e0234929, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32634137

RESUMO

Dengue virus (DENV) infection is endemic in Nepal. Although infection rates are reported annually, little information is available about the circulating viral serotypes and genotypes. Here, we report the results of a multicentre cross-sectional study of DENV serotypes and genotypes sampled from individuals with suspected DENV infection in Nepal in 2017. Of the 50 patients sampled, 40 were serologically positive for DENV NS1, 29 for anti-DENV IgM, 21 for anti-DENV IgG and 14 were positive by qRT-PCR. The three serotypes DENV-1, 2 and 3 were detected and there was no DENV-4. Positive samples from serotyping were subjected to PCR amplification by envelope (E) gene specific primer and subsequent bidirectional sequencing of 5 samples. A time to most recent common ancestor phylogenetic tree was constructed from the new sequences obtained here together with historical DENV-1 and DENV-2 E gene sequences. The DENV-1 isolates (n = 2) from Nepalese individuals were closely related to Indian genotype V, whereas DENV-2 isolates (n = 3) belonged to Cosmopolitan genotype IVa, which is closely related to Indonesian isolates. Historical DENV isolates obtained between 2004 and 2013 clustered with Cosmopolitan IVb, Cosmopolitan IVa, and Asian II genotypes. All Nepalese isolates had different lineages with distinct ancestries. With the exception of isolates obtained in 2004, all other previously published isolates had ancestry to geographically distant part of the world. Molecular analysis revealed dengue epidemics to be comprised of different genotypes of serotype 1 and 2 raising concerns on potential role of different genotypes causing Dengue hemorrhagic fever. Also, our result indicated spread of DENV-2 in non-endemic area such as hilly region of Nepal which was considered to be free of dengue due to high altitude and cold weather.


Assuntos
Vírus da Dengue/genética , Dengue/epidemiologia , Dengue/genética , Estudos Transversais , Surtos de Doenças , Epidemias , Genótipo , Humanos , Indonésia/epidemiologia , Nepal/epidemiologia , Filogenia , Sorogrupo , Sorotipagem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...