Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Trop Med Infect Dis ; 7(10)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36288063

RESUMO

Dengue fever is a serious and growing public health problem in Latin America and elsewhere, intensified by climate change and human mobility. This paper reviews the approaches to the epidemiological prediction of dengue fever using the One Health perspective, including an analysis of how Machine Learning techniques have been applied to it and focuses on the risk factors for dengue in Latin America to put the broader environmental considerations into a detailed understanding of the small-scale processes as they affect disease incidence. Determining that many factors can act as predictors for dengue outbreaks, a large-scale comparison of different predictors over larger geographic areas than those currently studied is lacking to determine which predictors are the most effective. In addition, it provides insight into techniques of Machine Learning used for future predictive models, as well as general workflow for Machine Learning projects of dengue fever.

2.
Foods ; 10(3)2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805620

RESUMO

Lipid extraction using the traditional, destructive Soxhlet method is not able to measure oil content (OC) on a single olive. As the color and near infrared spectrum are key parameters to build an oil estimation model (EM), this study grouped olives with similar color and NIR for building EM of oil content obtained by Soxhlet from a cluster of similar olives. The objective was to estimate OC of individual olives, based on clusters of similar color and NIR in two seasons. This study was performed with Arbequina olives in 2016 and 2017. The descriptor of the cluster consisted of the three color channels of c1c2c3 color model plus 11 reflectance points between 1710 and 1735 nm of each olive, normalized with the Z-score index. Clusters of similar color and NIR spectrum were formed with the k-means++ algorithm, leaving a sufficient number of olives to perform the Soxhlet analysis of OC, as reference value of EM. The training of EM was based on Support Vector Machine. The test was performed with Leave One-Out Cross Validation in different training-testing combinations. The best EM predicted the OC with 6 and 13% deviation with respect to the real value when one season was tested with itself and with another season, respectively. The use of clustering in EM is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA