Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Protoc ; 16(2): 893-918, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33442051

RESUMO

For a long time, solid-state nuclear magnetic resonance (ssNMR) has been employed to study complex biomolecular systems at the detailed chemical, structural, or dynamic level. Recent progress in high-resolution and high-sensitivity ssNMR, in combination with innovative sample preparation and labeling schemes, offers novel opportunities to study proteins in their native setting irrespective of the molecular tumbling rate. This protocol describes biochemical preparation schemes to obtain cellular samples of both soluble as well as insoluble or membrane-associated proteins in bacteria. To this end, the protocol is suitable for studying a protein of interest in both whole cells and in cell envelope or isolated membrane preparations. In the first stage of the procedure, an appropriate strain of Escherichia coli (DE3) is transformed with a plasmid of interest harboring the protein of interest under the control of an inducible T7 promoter. Next, the cells are adapted to grow in minimal (M9) medium. Before the growth enters stationary phase, protein expression is induced, and shortly thereafter, the native E. coli RNA polymerase is inhibited using rifampicin for targeted labeling of the protein of interest. The cells are harvested after expression and prepared for ssNMR rotor filling. In addition to conventional 13C/15N-detected ssNMR, we also outline how these preparations can be readily subjected to multidimensional ssNMR experiments using dynamic nuclear polarization (DNP) or proton (1H) detection schemes. We estimate that the entire preparative procedure until NMR experiments can be started takes 3-5 days.


Assuntos
Marcação por Isótopo/métodos , Espectroscopia de Ressonância Magnética/métodos , Proteínas/fisiologia , Bactérias/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana/química , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/metabolismo , Prótons
2.
Angew Chem Int Ed Engl ; 60(11): 5913-5920, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33428816

RESUMO

We report the supramolecular assembly of artificial metalloenzymes (ArMs), based on the Lactococcal multidrug resistance regulator (LmrR) and an exogeneous copper(II)-phenanthroline complex, in the cytoplasm of E. coli cells. A combination of catalysis, cell-fractionation, and inhibitor experiments, supplemented with in-cell solid-state NMR spectroscopy, confirmed the in-cell assembly. The ArM-containing whole cells were active in the catalysis of the enantioselective Friedel-Crafts alkylation of indoles and the Diels-Alder reaction of azachalcone with cyclopentadiene. Directed evolution resulted in two different improved mutants for both reactions, LmrR_A92E_M8D and LmrR_A92E_V15A, respectively. The whole-cell ArM system required no engineering of the microbial host, the protein scaffold, or the cofactor to achieve ArM assembly and catalysis. We consider this a key step towards integrating abiological catalysis with biosynthesis to generate a hybrid metabolism.


Assuntos
Cobre/metabolismo , Escherichia coli/metabolismo , Metaloproteínas/metabolismo , Compostos Aza/química , Compostos Aza/metabolismo , Biocatálise , Chalconas/química , Chalconas/metabolismo , Cobre/química , Ciclopentanos/química , Ciclopentanos/metabolismo , Escherichia coli/citologia , Indóis/química , Indóis/metabolismo , Lactococcus/química , Lactococcus/metabolismo , Metaloproteínas/química , Estrutura Molecular , Estereoisomerismo
3.
J Phys Chem B ; 124(41): 9047-9060, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32961049

RESUMO

Dynamic nuclear polarization (DNP) is a powerful method to enhance nuclear magnetic resonance (NMR) signal intensities, enabling unprecedented applications in life and material science. An ultimate goal is to expand the use of DNP-enhanced solid-state NMR to ultrahigh magnetic fields where optimal spectral resolution and sensitivity are integrated. Trityl-nitroxide (TN) biradicals have attracted significant interest in high-field DNP, but their application to complex (bio)molecules has so far been limited. Here we report a novel postmodification strategy for synthesis of hydrophilic TN biradicals in order to improve their use in biomolecular applications. Initially, three TN biradicals (referred to as NATriPols 1-3) with amino-acid linkers were synthesized. EPR studies showed that the α-position of the amino-acid linkers is an ideal modification site for these biradicals since their electron-electron magnetic interactions are marginally affected by the substituents at this position. On the basis of this finding, we synthesized NATriPol-4 with pyridine disulfide appended at the α-position. Postmodification of NATriPol-4 via thiol-click chemistry resulted in various TN biradicals including hydrophilic NATriPol-5 in a quantitative manner. Interestingly, DNP enhancements at 18.8 T of NATriPols for 13C,15N-proline in a glycerol/water matrix are inversely correlated with their hydrophobicity. Importantly, applications of hydrophilic NATriPol-5 and NATriPol-3 to biomolecules including a globular soluble protein and a membrane targeting peptide reveal significantly improved performance compared to TEMTriPol-1 and AMUPol. Our work provides an efficient approach for one-step synthesis of new polarizing agents with tunable physicochemical properties, thus expediting optimization of new biradicals for biomolecular applications at ultrahigh magnetic fields.

4.
Chempluschem ; 85(4): 760-768, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32297474

RESUMO

Solution-state NMR spectroscopy has become a powerful tool to study soluble proteins in cells, provided that they tumble sufficiently fast. In addition, cryo-electron tomography (cryo-ET) has recently displayed a tremendous potential to probe structures of large proteins and assemblies in their native cellular environments. However, challenges remain to obtain atomic-level information in native cell settings for proteins that are small, disordered, or are strongly engaged in intermolecular interactions. In this Minireview, we discuss recent progress in using sensitivity enhanced solid-state NMR spectroscopy methods in the context of cellular structural biology.

5.
Angew Chem Int Ed Engl ; 58(37): 12969-12973, 2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31233270

RESUMO

Elucidating at atomic level how proteins interact and are chemically modified in cells represents a leading frontier in structural biology. We have developed a tailored solid-state NMR spectroscopic approach that allows studying protein structure inside human cells at atomic level under high-sensitivity dynamic nuclear polarization (DNP) conditions. We demonstrate the method using ubiquitin (Ub), which is critically involved in cellular functioning. Our results pave the way for structural studies of larger proteins or protein complexes inside human cells, which have remained elusive to in-cell solution-state NMR spectroscopy due to molecular size limitations.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Sequência de Aminoácidos , Células HeLa , Humanos , Modelos Moleculares , Conformação Proteica , Ubiquitina/química , Ubiquitinação
6.
Methods Mol Biol ; 1688: 111-132, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29151207

RESUMO

Solid-state NMR (ssNMR) can provide structural information at the most detailed level and, at the same time, is applicable in highly heterogeneous and complex molecular environments. In the last few years, ssNMR has made significant progress in uncovering structure and dynamics of proteins in their native cellular environments [1-4]. Additionally, ssNMR has proven to be useful in studying large biomolecular complexes as well as membrane proteins at the atomic level [5]. In such studies, innovative labeling schemes have become a powerful approach to tackle spectral crowding. In fact, selecting the appropriate isotope-labeling schemes and a careful choice of the ssNMR experiments to be conducted are critical for applications of ssNMR in complex biomolecular systems. Previously, we have introduced a software tool called FANDAS (Fast Analysis of multidimensional NMR DAta Sets) that supports such investigations from the early stages of sample preparation to the final data analysis [6]. Here, we present a new version of FANDAS, called FANDAS 2.0, with improved user interface and extended labeling scheme options allowing the user to rapidly predict and analyze ssNMR data sets for a given protein-based application. It provides flexible options for advanced users to customize the program for tailored applications. In addition, the list of ssNMR experiments that can be predicted now includes proton (1H) detected pulse sequences. FANDAS 2.0, written in Python, is freely available through a user-friendly web interface at http://milou.science.uu.nl/services/FANDAS .


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Proteínas de Membrana/química , Conformação Proteica , Software , Marcação por Isótopo , Proteínas de Membrana/metabolismo
7.
Methods Mol Biol ; 1561: 109-138, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28236236

RESUMO

Modeling protein-peptide interactions remains a significant challenge for docking programs due to the inherent highly flexible nature of peptides, which often adopt different conformations whether in their free or bound forms. We present here a protocol consisting of a hybrid approach, combining the most frequently found peptide conformations in complexes with representative conformations taken from molecular dynamics simulations of the free peptide. This approach intends to broaden the range of conformations sampled during docking. The resulting ensemble of conformations is used as a starting point for information-driven flexible docking with HADDOCK. We demonstrate the performance of this protocol on six cases of increasing difficulty, taken from a protein-peptide benchmark set. In each case, we use knowledge of the binding site on the receptor to drive the docking process. In the majority of cases where MD conformations are added to the starting ensemble for docking, we observe an improvement in the quality of the resulting models.


Assuntos
Bases de Dados de Proteínas , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Proteínas/metabolismo , Software , Sítios de Ligação , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Proteínas/química , Navegador
8.
Cell ; 167(5): 1241-1251.e11, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27839865

RESUMO

The epidermal growth factor receptor (EGFR) represents one of the most common target proteins in anti-cancer therapy. To directly examine the structural and dynamical properties of EGFR activation by the epidermal growth factor (EGF) in native membranes, we have developed a solid-state nuclear magnetic resonance (ssNMR)-based approach supported by dynamic nuclear polarization (DNP). In contrast to previous crystallographic results, our experiments show that the ligand-free state of the extracellular domain (ECD) is highly dynamic, while the intracellular kinase domain (KD) is rigid. Ligand binding restricts the overall and local motion of EGFR domains, including the ECD and the C-terminal region. We propose that the reduction in conformational entropy of the ECD by ligand binding favors the cooperative binding required for receptor dimerization, causing allosteric activation of the intracellular tyrosine kinase.


Assuntos
Receptores ErbB/química , Receptores ErbB/metabolismo , Linhagem Celular Tumoral , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/isolamento & purificação , Humanos , Membranas Intracelulares/química , Ressonância Magnética Nuclear Biomolecular , Multimerização Proteica , Termodinâmica , Vesículas Transportadoras/química
9.
Angew Chem Int Ed Engl ; 54(52): 15799-803, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26555653

RESUMO

(1) H-detection can greatly improve spectral sensitivity in biological solid-state NMR (ssNMR), thus allowing the study of larger and more complex proteins. However, the general requirement to perdeuterate proteins critically curtails the potential of (1) H-detection by the loss of aliphatic side-chain protons, which are important probes for protein structure and function. Introduced herein is a labelling scheme for (1) H-detected ssNMR, and it gives high quality spectra for both side-chain and backbone protons, and allows quantitative assignments and aids in probing interresidual contacts. Excellent (1) H resolution in membrane proteins is obtained, the topology and dynamics of an ion channel were studied. This labelling scheme will open new avenues for the study of challenging proteins by ssNMR.

10.
Nat Methods ; 12(7): 649-52, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25984698

RESUMO

Studying biomolecules at atomic resolution in their native environment is the ultimate aim of structural biology. We investigated the bacterial type IV secretion system core complex (T4SScc) by cellular dynamic nuclear polarization-based solid-state nuclear magnetic resonance spectroscopy to validate a structural model previously generated by combining in vitro and in silico data. Our results indicate that T4SScc is well folded in the cellular setting, revealing protein regions that had been elusive when studied in vitro.


Assuntos
Proteínas de Bactérias/química , Espectroscopia de Ressonância Magnética/métodos , Sequência de Aminoácidos , Modelos Moleculares , Dados de Sequência Molecular , Dobramento de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...