Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 49(3): 510-513, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300046

RESUMO

Color centers in nanodiamonds (NDs) have been largely explored by coupling to a photonic structured matrix (PSM) to amplify visible range emission features, enhancing their use in quantum technologies. Here, we study the emission enhancement of dual near-infrared zero phonon line (ZPL) emission from silicon-boron (SiB) and silicon-vacancy (SiV-) centers in NDs using a spontaneously emerged low index-contrast quasiperiodic PSM, having micron-scale air pores. An intensity enhancement factor of 6.15 for SiV- and 7.8 for SiB ZPLs is attained for the PSM sample compared to a control sample. We find Purcell enhancement of 2.77 times for the PSM sample using spatial-dependent decay rate measurements, supported by localized field intensity confinement in the sample. Such cavity-like emission enhancement and lifetime reduction are enabled by an in-plane order-disorder scattering in the PSM sample substantiated by pump-dependent emission measurements. The results put forward a facile approach to tailor the near-infrared dual ZPL emission from NDs using nanophotonic structures.

2.
Nanoscale Adv ; 5(22): 6155-6161, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37941946

RESUMO

We design and fabricate hybrid organic inorganic perovskite photodetectors that utilize hole transport layer poly(3,4-ethylene dioxythiophene):poly (styrenesulfonate) PEDOT:PSS confined in alumina nanocylinders. This structural asymmetry in the device where the alumina nanopore template is partially filled with PEDOT:PSS provides features that improve certain device characteristics. The leakage component of the current in such devices is considerably suppressed, resulting in enhanced responsivity and detectivity. The funneling aspect of the photogenerated charge carrier transit ultimately leads to fast detectors as compared to conventional perovskite detectors.

3.
APL Bioeng ; 7(4): 046105, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37886014

RESUMO

Organic semiconductors are being explored as retinal prosthetics with the prime attributes of bio-compatibility and conformability for seamless integration with the retina. These polymer-based artificial photoreceptor films are self-powered with light-induced signal strength sufficient to elicit neuronal firing events. The molecular aspect of these semiconductors provides wide spectral tunability. Here, we present results from a bulk heterostructure semiconductor blend with a wide spectral response range. This combination elicits clear spiking activity from a developing blind-chick embryonic retina in the subretinal configuration in response to white light. The response is largely triggered by the blue-green spectral regime rather than the red-NIR regime for the present polymer semiconductor layer attributes.

4.
Soft Matter ; 19(29): 5641-5650, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37455639

RESUMO

We probe the microstructural differences of conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) derivatives under geometrical nanoconfinement using a high-resolution electron microscopy (HRTEM) technique. Highly ordered domains of poly(3,4-ethylenedioxythiophene):tosylate PEDOT:Tos, which is polymerized within alumina nanochannels, are observed. These features are in contrast to those of the polymer blend poly(3,4-ethylene dioxythiophene):poly(styrenesulfonate) PEDOT:PSS inserted into the nanopores. The extent of the order-disorder parameter in terms of surface crystallization and the number of ordered domains of the long-chain polymers strongly depends on the dopant environment, processing conditions and structural confinement. Atomic force spectroscopy of individual PEDOT nanochannels highlights counterion-dependent surface adhesive factors. The molecular dynamics (MD) simulation of these systems reveals similar polymer chain configurations and the resulting morphology.

5.
J Neural Eng ; 19(3)2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35561667

RESUMO

Optoelectronic semiconducting polymer material interfaced with a blind-developing chick-retina (E13-E18) in subretinal configuration reveals a response to full-field flash stimulus that resembles an elicited response from natural photoreceptors in a neonatal chick retina. The response manifests as evoked-firing of action potentials and was recorded using a multi-electrode array in contact with the retinal ganglion layer. Characteristics of increasing features in the signal unfold during different retina-development stages and highlight the emerging network mediated pathways typically present in the vision process of the artificial photoreceptor interfaced retina.


Assuntos
Polímeros , Retina , Potenciais de Ação , Humanos , Recém-Nascido , Células Fotorreceptoras , Retina/fisiologia , Células Ganglionares da Retina/fisiologia
6.
ACS Appl Mater Interfaces ; 13(45): 54527-54535, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34734692

RESUMO

Hybrid organic-inorganic perovskites (HOIPs) have emerged as a versatile class of semiconductors for numerous optoelectronic applications. Here, we demonstrate light-excitation-dependent two-dimensional (2D) position-sensitive detectors (PSDs) using a mixed-phase perovskite, FA0.83Cs0.17Pb(I0.9Br0.1)3, as the active semiconductor, incorporated within a five-terminal device geometry. The light-induced lateral photovoltage, which is initiated by selective charge transfer across the metal-perovskite barrier interface, is utilized to achieve the excitation-position-dependent electric response. The 2D PSD devices exhibit a spatially dependent linear variation of the photosignal with sensitivity >50 µV mm-1 and a low position detection error (1-2%), making them suitable for applications such as quadrant detectors. Further, it is observed that the device architecture plays a key role in controlling the dynamics and linearity of the HOIP PSDs. The large active area devices (up to ∼2 cm × 2 cm) exhibit a distinct spatial variation of the photosignal. We utilize the functionality of the PSD device for light-tracking applications by implementing a continuous detection scheme.

7.
J Dairy Sci ; 104(8): 8721-8735, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34024597

RESUMO

The purpose of this study was to investigate the effect of 3-nitrooxypropanol (3-NOP), a potent methane inhibitor, on total and metabolically active methanogens in the rumen of dairy cows over the course of the day and over a 12-wk period. Rumen contents of 8 ruminally cannulated early-lactation dairy cows were sampled at 2, 6, and 10 h after feeding during wk 4, 8, and 12 of a randomized complete block design experiment in which 3-NOP was fed at 60 mg/kg of feed dry matter. Cows (4 fed the control and 4 fed the 3-NOP diet) were blocked based on their previous lactation milk yield or predicted milk yield. Rumen samples were extracted for microbial DNA (total) and microbial RNA (metabolically active), PCR amplified for the 16S rRNA gene of archaea, sequenced on an Illumina platform, and analyzed for archaea diversity. In addition, the 16S copy number and 3 ruminal methanogenic species were quantified using the real-time quantitative PCR assay. We detected a difference between DNA and RNA (cDNA)-based archaea communities, revealing that ruminal methanogens differ in their metabolic activities. Within DNA and cDNA components, methanogenic communities differed by sampling hour, week, and treatment. Overall, Methanobrevibacter was the dominant genus (94.3%) followed by Methanosphaera, with the latter genus having greater abundance in the cDNA component (14.5%) compared with total populations (5.5%). Methanosphaera was higher at 2 h after feeding, whereas Methanobrevibacter increased at 6 and 10 h in both groups, showing diurnal patterns among individual methanogenic lineages. Methanobrevibacter was reduced at wk 4, whereas Methanosphaera was reduced at wk 8 and 12 in cows supplemented with 3-NOP compared with control cows, suggesting differential responses among methanogens to 3-NOP. A reduction in Methanobrevibacter ruminantium in all 3-NOP samples from wk 8 was confirmed using real-time quantitative PCR. The relative abundance of individual methanogens was driven by a combination of dietary composition, dry matter intake, and hydrogen concentrations in the rumen. This study provides novel information on the effects of 3-NOP on individual methanogenic lineages, but further studies are needed to understand temporal dynamics and to validate the effects of 3-NOP on individual lineages of ruminal methanogens.


Assuntos
Propanóis , Rúmen , Ração Animal/análise , Animais , Bovinos , Dieta/veterinária , Feminino , Fermentação , Lactação , Metano/metabolismo , Leite , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Rúmen/metabolismo
8.
Biofabrication ; 12(4): 045019, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32650326

RESUMO

A 3D fluidic device (3D-FD) is designed and developed with the capability of auto bubble guidance via a helical pathway in a 3D geometry. This assembly is integrated to a multi-electrode array (MEA) to maintain secondary cell lines, primary cells and primary retinal tissue explants of chick embryos for continuous monitoring of the growth and electrophysiology recording. The ability to maintain the retinal tissue explant, extracted from day 14 (E-14) and day 21 (E-21) chick embryos in an integrated 3D-FD MEA for long duration (>100 h) and study the development is demonstrated. The enhanced duration of monitoring offered by this device is due to the controlled laminar flow and the maintenance of a stable microenvironment. The spontaneous electrical activity of the retina, including the spike recordings from the retinal ganglion layer, was monitored over a long duration. Specifically, the spiking activity in embryonic chick retinas of different days (E-14 to 21) is studied, and the presence of light-stimulated firings along with a distinct electroretinogram for E-21 mature retina provides the evidence of a stable microenvironment over a sustained period.


Assuntos
Microfluídica/instrumentação , Animais , Embrião de Galinha , Eletrodos , Fenômenos Eletrofisiológicos , Luz , Retina/efeitos da radiação
9.
Chemistry ; 25(70): 16007-16011, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31617260

RESUMO

Unprecedented ambient triplet-mediated emission in core-substituted naphthalene diimide (cNDI) derivatives is unveiled via delayed fluorescence and room temperature phosphorescence. Carbazole core-substituted cNDIs, with a donor-acceptor design, showed deep-red triplet emission in solution processable films with high quantum yield. This study, with detailed theoretical calculations and time-resolved emission experiments, enables new design insights into the triplet harvesting of cNDIs; an important family of molecules which has been, otherwise, extensively been investigated for its n-type electronic character and tunable singlet fluorescence.

10.
Nano Lett ; 19(9): 6577-6584, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31448620

RESUMO

We report smart color-sensing devices of two-dimensional lead halide perovskites that exhibit a graded band gap across the film. We observe that the device short-circuit photocurrent is strongly dependent on excitation wavelength λ, and this arises through photoabsorption at different depths in the sample due to the graded bandgaps present. This λ signature in the response of the device is observed in case of steady-state excitation when incident from the high bandgap side of the film, where a complete reversal in the polarity of the photocurrent Iph(t) is obtained as the excitation wavelength is spanned across the visible spectrum. The transient photocurrent reveals λ-specific response arrived from a combination of positive and negative Iph(t) components. The uniqueness of Iph(t) as a function of incident λ can be utilized to examine spectral purity without dispersive optical elements. An equivalent circuit model description provides a possible glimpse into the physical sources involved in contributing to these features.

11.
ACS Appl Mater Interfaces ; 11(27): 24468-24477, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31246389

RESUMO

We demonstrate a single-step fabrication process of highly stable and luminescent polymer fibers embedded with quantum dots (QDs) of the organic-inorganic hybrid perovskite (OIP) (CH3NH3PbBr3) using the electrospinning process. The fiber (∼2 µm diameter) primarily consists of poly(methyl methacrylate) dispersed with clusters of OIP quantum dots. The OIP clusters are radially distributed, normal to the fiber axis. The photoluminescence quantum yield (PLQY) is high (∼80%) and comparable to that of conventional QDs. The emission maxima are tunable by varying the concentration of OIP precursor in the electrospinning solution. Submicron emission maps show an isotropic and continuous emission along the fiber, suggesting uniform distribution of QD clusters. Temperature-dependent PL response indicates features which are a function of the particle size. For small QDs, the PLQY(T) maxima are close to the ambient temperature, whereas the PLQY(T) maxima shift sizably to T < 50 K for larger QDs. Significant waveguiding of QDs emission and amplified spontaneous emission, a prerequisite for lasing, were observed in the fiber confined OIP system at room temperature.

12.
J Appl Microbiol ; 127(3): 897-910, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31173435

RESUMO

AIMS: To elucidate the antibiotic resistance and virulence genes of nisin-resistant Enterococcus faecalis isolated from raw buffalo milk and to study the effect of nisin-sensitive and -resistant E. faecalis on the innate immunity of rats. METHODS AND RESULTS: Slanetz-Bartley agar plates containing nisin were used to isolate nisin-resistant E. faecalis. The virulence factors were ascertained using quantitative real-time polymerase chain reaction. Cell viability, phagocytosis, intracellular survival and enzyme assays were performed to investigate the interaction of E. faecalis with rat macrophages. Nisin-resistant E. faecalis was less prone to phagocytosis and survived longer inside the macrophages, due to reduced production of reactive oxygen species and nitric oxide. The viability and activation of macrophages was also reduced in the presence of resistant E. faecalis, as observed by enhanced lactate dehydrogenase production and reduced ß-galactosidase. CONCLUSIONS: Nisin-resistant E. faecalis and its virulence factors were reported in raw buffalo milk. This study shows that nisin-resistant variants exhibited cross resistance to antibiotics and suppressed the innate immune responses of rats by directly affecting macrophage activity. SIGNIFICANCE AND IMPACT OF THE STUDY: This study elucidated the contamination of raw buffalo milk by nisin-resistant E. faecalis, which may pose food safety risk.


Assuntos
Enterococcus faecalis/genética , Macrófagos/efeitos dos fármacos , Leite/microbiologia , Animais , Búfalos , Farmacorresistência Bacteriana/genética , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/isolamento & purificação , Macrófagos/metabolismo , Macrófagos/fisiologia , Testes de Sensibilidade Microbiana , Nisina/farmacologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Virulência/genética , Fatores de Virulência/genética
13.
Nanotechnology ; 29(44): 445202, 2018 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-30106005

RESUMO

Self-powered photodetectors have been fabricated from a single germanium nanowire (NW) in the metal-semiconductor-metal (MSM) device configuration. The self-powered devices show a high photoresponse (responsivity âˆ¼ 103-105 A W-1) in the wavelength range 300-1100 nm. It has been established from I-V characteristics that asymmetry exists in the Schottky barrier height (SBH) at the two MS contacts. We have used simulation to establish that the asymmetric SBH at the metal contacts in an MSM device is a major cause for the 'built-in' axial field that leads to separation of a light generated electron-hole pair in the absence of an applied bias. Thus, even in the absence of external bias, the photogenerated carriers can be separated, which then diffuse to the appropriate electrodes driven by the 'built-in' axial field. We also point out the physical origins that can lead to unequal barrier heights in seemingly identical NW/metal junctions in a MSM device.

14.
ACS Appl Mater Interfaces ; 10(25): 21492-21498, 2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29847908

RESUMO

The development of high-performance multifunctional polymer-based electronic circuits is a major step toward future flexible electronics. Here, we demonstrate a tunable approach to fabricate such devices based on rationally designed dielectric super-lattice structures with photochromic azobenzene molecules. These nanodielectrics possessing ionic, molecular, and atomic polarization are utilized in polymer thin-film transistors (TFTs) to realize high-performance electronics with a p-type field-effect mobility (µFET) exceeding 2 cm2 V-1 s-1. A crossover in the transport mechanism from electrostatic dipolar disorder to ionic-induced disorder is observed in the transistor characteristics over a range of temperatures. The facile supramolecular design allows the possibility to optically control the extent of molecular and ionic polarization in the ultrathin nanodielectric. Thus, we demonstrate a 3-fold increase in the capacitance from 0.1 to 0.34 µF/cm2, which results in a 200% increase in TFT channel current.

15.
Nano Lett ; 17(12): 7945-7950, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29178808

RESUMO

We utilize ordered mesoporous alumina templates for solution processable electronics and demonstrate massively parallel organization of connected three-terminal vertical transistors. The vertical transistor device consists of a connected organic nanotriode array obtained using porous anodized alumina membranes of pore density ≈ 109 pores/cm2. In this structure, a collector-emitter diode gives rise to a space charge limited current, which can be controlled by a third intermediate porous base electrode to give transistor-like characteristics. We study the response characteristics along with 2D device simulations of this novel structure to indicate key parameters involved in the underlying mechanism. Device operation at single transistor level is verified by conductive atomic force microscopy, and the inherent short switching time scales of the vertical structure device is also demonstrated.

16.
ACS Appl Mater Interfaces ; 9(33): 28010-28018, 2017 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-28703571

RESUMO

With recent progress in flexible electronics, developing facile one-step techniques for fabricating stretchable conductors and interconnects remain essential. It is also desirable for these processes to have a small number of processing steps, incorporate micropatterning, and be capable of being effortlessly implemented for manufacturing of wearable logic circuits. A low vacuum flash evaporation of Au nanoclusters is proposed as a facile method to fabricate highly stretchable conductors capable of fulfilling all such requirements. High metal-elastomer adhesion on textured substrates ensures low surface resistances (100% strain ≈ 25 Ω-sq-1) where thin film Au accommodate strain like a "bellow". Stretchability for conductors deposited on non-prestretched textured substrates up to 150% and smooth PDMS substrates up to 200% are shown. The system is modeled on a microscopic system calculating 2-D current continuity equations. Devising low cost techniques for fabricating stretchable conductors remains essential and in that direction stretchable circuits, heating elements have been demonstrated.

17.
ACS Appl Mater Interfaces ; 9(23): 19436-19445, 2017 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-27731618

RESUMO

We propose an optimum low-temperature-based annealing procedure for semicrystalline donor-fullerene solar cells that is well-suited for plastic and flexible substrates. This proposed alternate strategy utilizes an external electric field (EF) across the bulk heterojunction (BHJ) film during processing at a desired temperature. This processing technique is studied for different molecular weights of the donor in the BHJ blend films. The films indicate an increase in interchain interactions of the semicrystalline polymer chains and an enhancement in hole mobility with EF-assisted annealing treatment. Besides being a controlled method, this processing technique is capable of yielding solar cell devices with performance equivalent to or better than those obtained using plain thermal procedures.

18.
J Am Chem Soc ; 138(26): 8259-68, 2016 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-27305598

RESUMO

The possibility of designing programmable thin-film supramolecular structures with spontaneous polarization widens the utility of facile supramolecular chemistry. Although a range of low molecular mass molecular single crystals has been shown to exhibit ferroelectric polarization, demonstration of stimuli-responsive, thin-film, solution-processable supramolecular ferroelectric materials is rare. We introduce aromatic π-electron donor-acceptor molecular systems responsive to multiple stimuli that undergo supramolecular chiral mixed-stack charge-transfer (CT) coassembly through the tweezer-inclusion-sandwich process supported by hydrogen-bonding interactions. The structural synergy originating from hydrogen-bonding and chiral CT interactions resulted in the development of spontaneous unidirectional macroscopic polarization in the crystalline nanofibrous hydrogel network, under ambient conditions. Moreover, the tunability of these interactions with optical, mechanical, thermal, and electrical stimuli allowed the design of multistate thin-film memory devices. Our design strategy of the supramolecular motif is expected to help the development of new molecular engineering strategies for designing potentially useful smart multicomponent organic electronics.

19.
ACS Appl Mater Interfaces ; 8(13): 8678-85, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-27002593

RESUMO

We present a bioinspired design strategy to effectively tailor the assembly of naphthalenediimides (NDIs) into a wide variety of architectures by functionalizing with amino acid derivatives. This bioinspired process of custom designing and engineering molecular assemblies is termed "bioinspired architectonics". By employing minute structural mutations in the form of α-substituents of amino acids, we successfully engineered molecular assembly of NDIs into zero-dimensional (0D, spheres), one-dimensional (1D, fibers), and two-dimensional (2D, sheets) architectures. The 2D sheets of phenylalanine methylester appended NDI 1 showed remarkable bulk electron mobility of up to 1 cm(2) V(-1)s(-1). With the aid of photophysical, diffraction, and microscopy techniques we rationalize the effect of molecular structure with their ordering and electronic properties in an effort to find structure-property correlations via a bioinspired modular approach.


Assuntos
Aminoácidos/química , Imidas/química , Estrutura Molecular , Naftalenos/química , Semicondutores , Aminoácidos/genética , Dicroísmo Circular , Elétrons , Imidas/síntese química , Mutação , Naftalenos/síntese química , Fenilalanina/química , Relação Estrutura-Atividade
20.
ACS Appl Mater Interfaces ; 7(44): 24876-86, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26480854

RESUMO

Perylene diimide (PDI)-based organic photovoltaic devices can potentially deliver high power conversion efficiency values provided the photon energy absorbed is utilized efficiently in charge transfer (CT) reactions instead of being consumed in nonradiative energy transfer (ET) steps. Hitherto, it remains unclear whether ET or CT primarily drives the photoluminescence (PL) quenching of the PDI excimer state in PDI-based blend films. Here, we affirm the key role of the thermally assisted PDI excimer diffusion and subsequent CT reaction in the process of PDI excimer PL deactivation. For our study we perform PL quenching experiments in the model PDI-based composite made of poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b']dithiophene-2,6-diyl-alt-(4-(2-ethylhexanoyl)-thieno[3,4-b]thiophene)-2-6-diyl] (PBDTTT-CT) polymeric donor mixed with the N,N'-bis(1-ethylpropyl)-perylene-3,4,9,10-tetracarboxylic diimide (PDI) acceptor. Despite the strong spectral overlap between the PDI excimer PL emission and UV-vis absorption of PBDTTT-CT, two main observations indicate that no significant ET component operates in the overall PL quenching: the PL intensity of the PDI excimer (i) increases with decreasing temperature and (ii) remains unaffected even in the presence of 10 wt % content of the PBDTTT-CT quencher. Temperature-dependent wide-angle X-ray scattering experiments further indicate that nonradiative resonance ET is highly improbable due to the large size of PDI domains. The dominance of the CT over the ET process is verified by the high performance of devices with an optimum composition of 30:70 PBDTTT-CT:PDI. By adding 0.4 vol % of 1,8-diiodooctane we verify the plasticization of the polymer side chains that balances the charge transport properties of the PBDTTT-CT:PDI composite and results in additional improvement in the device efficiency. The temperature-dependent spectral width of the PDI excimer PL band suggests the presence of energetic disorder in the PDI excimer excited state manifold.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...