Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(31): e2304632, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37737614

RESUMO

Polylactide (PLA) is the most widely utilized biopolymer in medicine. However, chronic inflammation and excessive fibrosis resulting from its degradation remain significant obstacles to extended clinical use. Immune cell activation has been correlated to the acidity of breakdown products, yet methods to neutralize the pH have not significantly reduced adverse responses. Using a bioenergetic model, delayed cellular changes were observed that are not apparent in the short-term. Amorphous and semi-crystalline PLA degradation products, including monomeric l-lactic acid, mechanistically remodel metabolism in cells leading to a reactive immune microenvironment characterized by elevated proinflammatory cytokines. Selective inhibition of metabolic reprogramming and altered bioenergetics both reduce these undesirable high cytokine levels and stimulate anti-inflammatory signals. The results present a new biocompatibility paradigm by identifying metabolism as a target for immunomodulation to increase tolerance to biomaterials, ensuring safe clinical application of PLA-based implants for soft- and hard-tissue regeneration, and advancing nanomedicine and drug delivery.


Assuntos
Inflamação , Poliésteres , Humanos , Poliésteres/química , Inflamação/metabolismo , Materiais Biocompatíveis , Citocinas/metabolismo
2.
Molecules ; 28(9)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37175242

RESUMO

Carbon-carbon backbone polymers are non-biodegradable, persistent plastics that have accumulated on land and oceans due to human activities. They degrade and fragment into microplastics and smaller particle sizes but do not biodegrade at an acceptable and practical rate. Their continual buildup in the natural environment precipitates serious detrimental impacts on human health and the environment, as extensively documented in the literature and media. Nearly 77% of global plastics produced are carbon-carbon backbone polymers. More importantly, 90% of packaging plastics (153.8 million metric tons) are non-biodegradable, persistent carbon-carbon backbone polymers. The recycling rate of these non-durable packaging plastics ranges from 0 to 4%. Re-designing carbon-carbon backbone polymers to labile ester backbone biodegradable-compostable polymers and treating them along with biodegradable organic waste (such as food, paper, and organic wastes) in managed industrial composting is environmentally responsible. Diverting 1 million metric tons of biodegradable organic wastes in MSW bound for landfills and open dumps to industrial composting results in 0.95 million metric tons CO2 equivalents of GHG emissions reduction. This perspective paper discusses strategies and rationales regarding the redesign of carbon-carbon backbone polymer molecules. It describes the carbon footprint reductions achievable by replacing petro-fossil carbon with plant biomass carbon. Biodegradability and compostability are frequently used but misunderstood and misused terms, leading to misleading claims in the marketplace. This paper presents the fundamentals of biodegradability and compostability of plastics and the requirements to be met according to ASTM/ISO international standards.

3.
Polymers (Basel) ; 15(4)2023 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36850205

RESUMO

A scalable continuous manufacturing method to produce stereocomplex PLA was developed and optimized by melt-blending a 1:1 blend of high molecular weight poly(L-lactide) (PLLA) and high molecular weight poly(D-lactide) (PDLA) in a co-rotating twin-screw extruder. Thermal characteristics of stereocomplex formation were characterized via DSC to identify the optimal temperature profile and time for processing stereocomplex PLA. At the proper temperature window, high stereocomplex formation is achieved as the twin-screw extruder allows for alignment of the chains; this is due to stretching of the polymer chains in the extruder. The extruder processing conditions were optimized and used to produce >95% of stereocomplex PLA conversion (melting peak temperature Tpm = 240 °C). ATR-FTIR depicts the formation of stereocomplex crystallites based on the absorption band at 908 cm-1 (ß helix). The only peaks observed for stereocomplex PLA's WAXD profile were at 2θ values of 12, 21, and 24°, verifying >99% of stereocomplex formation. The total crystallinity of stereocomplex PLA ranges from 56 to 64%. A significant improvement in the tensile behavior was observed in comparison to the homopolymers, resulting in a polymer of high strength and toughness. These results lead us to propose stereocomplex PLA as a potential additive/fiber that can reinforce the material properties of neat PLA.

4.
ACS Biomater Sci Eng ; 9(2): 932-943, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36634351

RESUMO

Repeating l- and d-chiral configurations determine polylactide (PLA) stereochemistry, which affects its thermal and physicochemical properties, including degradation profiles. Clinically, degradation of implanted PLA biomaterials promotes prolonged inflammation and excessive fibrosis, but the role of PLA stereochemistry is unclear. Additionally, although PLA of varied stereochemistries causes differential immune responses in vivo, this observation has yet to be effectively modeled in vitro. A bioenergetic model was applied to study immune cellular responses to PLA containing >99% l-lactide (PLLA), >99% d-lactide (PDLA), and a 50/50 melt-blend of PLLA and PDLA (stereocomplex PLA). Stereocomplex PLA breakdown products increased IL-1ß, TNF-α, and IL-6 protein levels but not MCP-1. Expression of these proinflammatory cytokines is mechanistically driven by increases in glycolysis in primary macrophages. In contrast, PLLA and PDLA degradation products selectively increase MCP-1 protein expression. Although both oxidative phosphorylation and glycolysis are increased with PDLA, only oxidative phosphorylation is increased with PLLA. For each biomaterial, glycolytic inhibition reduces proinflammatory cytokines and markedly increases anti-inflammatory (IL-10) protein levels; differential metabolic changes in fibroblasts were observed. These findings provide mechanistic explanations for the diverse immune responses to PLA of different stereochemistries and underscore the pivotal role of immunometabolism in the biocompatibility of biomaterials applied in medicine.


Assuntos
Materiais Biocompatíveis , Poliésteres , Poliésteres/farmacologia , Poliésteres/química , Materiais Biocompatíveis/farmacologia , Próteses e Implantes , Citocinas
5.
Polymers (Basel) ; 13(23)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34883628

RESUMO

This study reports on using reactive extrusion (REX) modified thermoplastic starch particles as a bio-based and biodegradable nucleating agent to increase the rate of crystallization, percent crystallinity and improve oxygen barrier properties while maintaining the biodegradability of PLA. Reactive blends of maleated thermoplastic starch (MTPS) and PLA were prepared using a ZSK-30 twin-screw extruder; 80% glycerol was grafted on the starch during the preparation of MTPS as determined by soxhlet extraction with acetone. The crystallinity of PLA was found to increase from 7.7% to 28.6% with 5% MTPS. The crystallization temperature of PLA reduced from 113 °C to 103 °C. Avrami analysis of the blends showed that the crystallization rate increased 98-fold and t1/2 was reduced drastically from 20 min to <1 min with the addition of 5% MTPS compared to neat PLA. Observation from POM confirmed that the presence of MTPS in the PLA matrix significantly increased the rate of formation and density of spherulites. Oxygen and water vapor permeabilities of the solvent-casted PLA/MTPS films were reduced by 33 and 19% respectively over neat PLA without causing any detrimental impacts on the mechanical properties (α = 0.05). The addition of MTPS to PLA did not impact the biodegradation of PLA in an aqueous environment.

6.
Polymers (Basel) ; 12(2)2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32028695

RESUMO

This study examined the effect of nanoclays and surfactant on the hydrolytic degradation and biodegradation of poly(lactic acid) (PLA) and PLA nanocomposites. Organomodified montmorillonite (OMMT), unmodified montmorillonite (MMT) and an organomodifier (surfactant) for MMT (QAC) were extruded with PLA to produce PLA nanocomposites. The films were produced with the same initial molecular weight, thickness and crystallinity since these properties have a significant effect on the biodegradation process. The biodegradation experiments were carried out in an in-house built direct measurement respirometric system and were evaluated in inoculated vermiculite and vermiculite media for extended periods of time. Hydrolysis experiments were also conducted separately to decouple the abiotic/hydrolysis phase. The results showed no significant variation in the mineralization of PLA nanocomposites as compared to pristine PLA. The addition of nanoclays did not enhance the biodegradability of PLA when the initial parameters were strictly controlled. The hydrolysis test indicated that the nanoclays and surfactant did not aid in the degradation of PLA.

8.
Science ; 347(6223): 768-71, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25678662

RESUMO

Plastic debris in the marine environment is widely documented, but the quantity of plastic entering the ocean from waste generated on land is unknown. By linking worldwide data on solid waste, population density, and economic status, we estimated the mass of land-based plastic waste entering the ocean. We calculate that 275 million metric tons (MT) of plastic waste was generated in 192 coastal countries in 2010, with 4.8 to 12.7 million MT entering the ocean. Population size and the quality of waste management systems largely determine which countries contribute the greatest mass of uncaptured waste available to become plastic marine debris. Without waste management infrastructure improvements, the cumulative quantity of plastic waste available to enter the ocean from land is predicted to increase by an order of magnitude by 2025.


Assuntos
Poluição Ambiental/estatística & dados numéricos , Plásticos , Gerenciamento de Resíduos/estatística & dados numéricos , Resíduos , Poluentes Químicos da Água , Oceanos e Mares , Água do Mar
9.
Biomacromolecules ; 14(3): 890-9, 2013 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-23369072

RESUMO

Environmentally friendly poly(butylenesuccinate-co-butyleneazelate) (P(BS-co-BAz)s) aliphatic copolyesters with composition-dependent thermomechanical properties were synthesized from succinic acid (SuA), 1,4-butanediol (BDO), and dimethylazelate (DMAz) through a two-step polycondensation reaction. The molar SuA/AzA ratio was varied from 4:1 to 1:4, and the chemical structure and molecular characteristics of resulting (co)polyesters were characterized by NMR and SEC, whereas thermal properties and crystallinity were studied by differential scanning calorimetry (DSC), dynamic mechanical thermal analyses (DMTA), and X-ray diffraction (XRD). A good agreement between theoretical and experimental SuA/AzA molar ratios in the copolyesters was achieved, together with the recovery of semicrystalline random copolymers of uniform composition along the chains. NMR, DSC, DMTA, and XRD results show that depending on their composition the P(BS-co-BAz) copolyesters might find applications from elastomers to high-impact thermoplastics.


Assuntos
Materiais Biocompatíveis/síntese química , Butileno Glicóis/química , Poliésteres/síntese química , Polímeros/química , Varredura Diferencial de Calorimetria , Espectroscopia de Ressonância Magnética , Difração de Raios X
10.
Biomacromolecules ; 6(3): 1334-44, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15877350

RESUMO

Ozonolysis of methyl soyate (biodiesel) was conducted in the presence of methanol, dichloromethane (solvent), and triethylamine (catalyst) at -75 degrees C. Structural analysis, including FTIR, GC, and GC-MS, showed that the total amount of double bonds in the mixture was reduced by more than 90% after 2 h of ozonolysis. All of the esters predicted by this novel application of ozone reaction chemistry were successfully produced. Other major components were identified by GC-MS. Thermogravimetric analysis showed a dramatic decrease in the onset volatilization temperature from 135 to 73 degrees C, making ozonated biodiesel fuel comparable to diesel fuel (76 degrees C). Differential scanning calorimetric studies showed that the cooling curves for both methyl soyate and ozonated methyl soyate displayed two exothermic regions. The onset freezing temperature of ozonated methyl soyate in the "colder" region was significantly reduced from -63 to -86 degrees C. Furthermore, the degree of crystallinity in the "hotter" region was also reduced.


Assuntos
Gasolina/análise , Gasolina/normas , Ozônio/análise , Óleo de Soja/análise , Óleo de Soja/normas , Catálise , Metanol/análise , Metanol/normas
11.
Biomacromolecules ; 6(2): 807-17, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15762645

RESUMO

Free-radical-initiated grafting of maleic anhydride (MA) onto poly(butylene adipate-co-terephthalate) (PBAT), a biodegradable aliphatic-aromatic copolyester, was performed by reactive extrusion. 2,5-Dimethyl-2,5-di(tert-butylperoxy)hexane was used as the free-radical initiator. The peroxide concentration was varied between 0.0 and 0.5 wt % at 3.0 wt % MA concentration; the MA concentration was varied between 1.0 and 5.0 wt % at 0.5 wt % peroxide concentration. The reaction temperature was maintained at 185 degrees C for all experiments. Under these conditions, between 0.194% and 0.691% MA was grafted onto the polyester backbone. Size-exclusion chromatography, melt flow index, intrinsic viscosity measurements, thermal gravimetric analysis, and differential scanning calorimetry were used to characterize the maleated copolyester. Increasing the initiator concentration at a constant MA concentration of 3% resulted in an increase in the grafting of MA while decreasing the molecular weight of the resulting polymer. Increasing the feed MA concentration also increased the grafting percentage. The maleation of the polyester proved to be very efficient in promoting strong interfacial adhesion with high amylose cornstarch in starch foams as prepared by melt blending. Thus, the use of maleated copolyester as a compatibilizer between starch and PBAT allowed the reduction of the density of resulting starch foams to approximately 21 kg/m3 and improved the resilience from 84% to as high as 95%. Also, the resulting starch foams exhibited improved hydrophobic properties in terms of lower weight gain and higher dimensional stability on moisture sorption.


Assuntos
Plastificantes/química , Poliésteres/química , Amido/química , Biodegradação Ambiental , Resíduos Industriais/prevenção & controle , Anidridos Maleicos/química , Embalagem de Produtos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...