Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 246
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38703164

RESUMO

BACKGROUND: In patients with persistent atrial fibrillation (PerAF), antiarrhythmic drugs (AADs) are considered a first-line rhythm-control strategy, whereas catheter ablation is a reasonable alternative. OBJECTIVES: This study sought to examine the prevalence, patient characteristics, and clinical outcomes of patients with PerAF who underwent catheter ablation as a first or second-line strategy. METHODS: This multicenter observational study included consecutive patients with PerAF who underwent first-time ablation between January 2020 and September 2021 in 9 medical centers in the United States. Patients were divided into those who underwent ablation as first-line therapy and those who had ablation as second-line therapy. Patient characteristics and clinical outcomes were compared between the groups. RESULTS: A total of 2,083 patients underwent first-time ablation for PerAF. Of these, 1,086 (52%) underwent ablation as a first-line rhythm-control treatment. Compared with patients treated with AADs as first-line therapy, these patients were predominantly male (72.6% vs 68.1%; P = 0.03), with a lower frequency of hypertension (64.0% vs 73.4%; P < 0.001) and heart failure (19.1% vs 30.5%; P < 0.001). During a mean follow-up of 325.9 ± 81.6 days, arrhythmia-free survival was similar between the groups (HR: 1.13; 95% CI: 0.92-1.41); however, patients in the second-line ablation strategy were more likely to continue receiving AAD therapy (41.5% vs 15.9%; P < 0.001). CONCLUSIONS: A first-line ablation strategy for PerAF is prevalent in the United States, particularly in men with fewer comorbidities. More data are needed to identify patients with PerAF who derive benefit from an early intervention strategy.

2.
Europace ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38703375

RESUMO

BACKGROUND AND AIMS: Ablation of monomorphic ventricular tachycardia (MMVT) has been shown to reduce shock frequency and improve survival. We aimed to compare cause-specific risk factors of MMVT and polymorphic ventricular tachycardia (PVT)/ventricular fibrillation (VF) and to develop predictive models. METHODS: The multicenter retrospective cohort study included 2,668 patients (age 63.1±13.0 y; 23% female; 78% white; 43% nonischemic cardiomyopathy, left ventricular ejection fraction 28.2±11.1%). Cox models were adjusted for demographic characteristics, heart failure severity and treatment, device programming, and ECG metrics. Global electrical heterogeneity was measured by spatial QRS-T angle (QRSTa), spatial ventricular gradient elevation (SVGel), azimuth, magnitude (SVGmag), and sum absolute QRST integral (SAIQRST). We compared the out-of-sample performance of the lasso and elastic net for Cox proportional hazards and the Fine-Gray competing risk model. RESULTS: During a median follow-up of 4 years, 359 patients experienced their first sustained MMVT with appropriate ICD therapy, and 129 patients had their first PVT/VF with appropriate ICD shock. The risk of MMVT was associated with wider QRSTa (HR 1.16; 95%CI 1.01-1.34), larger SVGel (HR 1.17; 95%CI 1.05-1.30), and smaller SVGmag (HR 0.74; 95%CI 0.63-0.86) and SAIQRST (HR 0.84; 95%CI 0.71-0.99). The best-performing 3-year competing risk Fine-Gray model for MMVT (ROC(t)AUC 0.728; 95%CI 0.668-0.788) identified high-risk (> 50%) patients with 75% sensitivity, 65% specificity, and PVT/VF prediction model had ROC(t)AUC 0.915 (95%CI 0.868-0.962), both satisfactory calibration. CONCLUSION: We developed and validated models to predict the competing risks of MMVT or PVT/VF that could inform procedural planning and future RCTs of prophylactic VT ablation.

4.
Circulation ; 149(14): e1028-e1050, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38415358

RESUMO

A major focus of academia, industry, and global governmental agencies is to develop and apply artificial intelligence and other advanced analytical tools to transform health care delivery. The American Heart Association supports the creation of tools and services that would further the science and practice of precision medicine by enabling more precise approaches to cardiovascular and stroke research, prevention, and care of individuals and populations. Nevertheless, several challenges exist, and few artificial intelligence tools have been shown to improve cardiovascular and stroke care sufficiently to be widely adopted. This scientific statement outlines the current state of the art on the use of artificial intelligence algorithms and data science in the diagnosis, classification, and treatment of cardiovascular disease. It also sets out to advance this mission, focusing on how digital tools and, in particular, artificial intelligence may provide clinical and mechanistic insights, address bias in clinical studies, and facilitate education and implementation science to improve cardiovascular and stroke outcomes. Last, a key objective of this scientific statement is to further the field by identifying best practices, gaps, and challenges for interested stakeholders.


Assuntos
Doenças Cardiovasculares , Cardiopatias , Acidente Vascular Cerebral , Estados Unidos , Humanos , Inteligência Artificial , American Heart Association , Doenças Cardiovasculares/terapia , Doenças Cardiovasculares/prevenção & controle , Acidente Vascular Cerebral/diagnóstico , Acidente Vascular Cerebral/prevenção & controle
5.
Circ Arrhythm Electrophysiol ; 17(3): e012041, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38348685

RESUMO

BACKGROUND: Atrial fibrillation is the most common cardiac arrhythmia in the world and increases the risk for stroke and morbidity. During atrial fibrillation, the electric activation fronts are no longer coherently propagating through the tissue and, instead, show rotational activity, consistent with spiral wave activation, focal activity, collision, or partial versions of these spatial patterns. An unexplained phenomenon is that although simulations of cardiac models abundantly demonstrate spiral waves, clinical recordings often show only intermittent spiral wave activity. METHODS: In silico data were generated using simulations in which spiral waves were continuously created and annihilated and in simulations in which a spiral wave was intermittently trapped at a heterogeneity. Clinically, spatio-temporal activation maps were constructed using 60 s recordings from a 64 electrode catheter within the atrium of N=34 patients (n=24 persistent atrial fibrillation). The location of clockwise and counterclockwise rotating spiral waves was quantified and all intervals during which these spiral waves were present were determined. For each interval, the angle of rotation as a function of time was computed and used to determine whether the spiral wave returned in step or changed phase at the start of each interval. RESULTS: In both simulations, spiral waves did not come back in phase and were out of step." In contrast, spiral waves returned in step in the majority (68%; P=0.05) of patients. Thus, the intermittently observed rotational activity in these patients is due to a temporally and spatially conserved spiral wave and not due to ones that are newly created at the onset of each interval. CONCLUSIONS: Intermittency of spiral wave activity represents conserved spiral wave activity of long, but interrupted duration or transient spiral activity, in the majority of patients. This finding could have important ramifications for identifying clinically important forms of atrial fibrillation and in guiding treatment.


Assuntos
Fibrilação Atrial , Humanos , Fibrilação Atrial/diagnóstico , Átrios do Coração , Catéteres , Doença do Sistema de Condução Cardíaco , Simulação por Computador
7.
J Interv Card Electrophysiol ; 67(1): 111-118, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37256462

RESUMO

BACKGROUND: Tyrosine kinase inhibitors (TKIs) are widely used in the treatment of hematologic malignancies. Limited studies have shown an association between treatment-limiting arrhythmias and TKI, particularly ibrutinib, a Bruton's tyrosine kinase (BTK) inhibitor. We sought to comprehensively assess the arrhythmia burden in patients receiving ibrutinib vs non-BTK TKI vs non-TKI therapies. METHODS: We performed a retrospective analysis of consecutive patients who received long-term cardiac event monitors while on ibrutinib, non-BTK TKIs, or non-TKI therapy for a hematologic malignancy between 2014 and 2022. RESULTS: One hundred ninety-three patients with hematologic malignancies were included (ibrutinib = 72, non-BTK TKI = 46, non-TKI therapy = 75). The average duration of TKI therapy was 32 months in the ibrutinib group vs 64 months in the non-BTK TKI group (p = 0.003). The ibrutinib group had a higher prevalence of atrial fibrillation (n = 32 [44%]) compared to the non-BTK TKI (n = 7 [15%], p = 0.001) and non-TKI (n = 15 [20%], p = 0.002) groups. Similarly, the prevalence of non-sustained ventricular tachycardia was higher in the ibrutinib group (n = 31, 43%) than the non-BTK TKI (n = 8 [17%], p = 0.004) and non-TKI groups (n = 20 [27%], p = 0.04). TKI therapy was held in 25% (n = 18) of patients on ibrutinib vs 4% (n = 2) on non-BTK TKIs (p = 0.005) secondary to arrhythmias. CONCLUSIONS: In this large retrospective analysis of patients with hematologic malignancies, patients receiving ibrutinib had a higher prevalence of atrial and ventricular arrhythmias compared to those receiving other TKI, with a higher rate of treatment interruption due to arrhythmias.


Assuntos
Fibrilação Atrial , Neoplasias Hematológicas , Humanos , Tirosina Quinase da Agamaglobulinemia , Estudos Retrospectivos , Fibrilação Atrial/tratamento farmacológico , Fibrilação Atrial/epidemiologia
8.
EBioMedicine ; 99: 104937, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38118401

RESUMO

BACKGROUND: Risk stratification for ventricular arrhythmias currently relies on static measurements that fail to adequately capture dynamic interactions between arrhythmic substrate and triggers over time. We trained and internally validated a dynamic machine learning (ML) model and neural network that extracted features from longitudinally collected electrocardiograms (ECG), and used these to predict the risk of malignant ventricular arrhythmias. METHODS: A multicentre study in patients implanted with an implantable cardioverter-defibrillator (ICD) between 2007 and 2021 in two academic hospitals was performed. Variational autoencoders (VAEs), which combine neural networks with variational inference principles, and can learn patterns and structure in data without explicit labelling, were trained to encode the mean ECG waveforms from the limb leads into 16 variables. Supervised dynamic ML models using these latent ECG representations and clinical baseline information were trained to predict malignant ventricular arrhythmias treated by the ICD. Model performance was evaluated on a hold-out set, using time-dependent receiver operating characteristic (ROC) and calibration curves. FINDINGS: 2942 patients (61.7 ± 13.9 years, 25.5% female) were included, with a total of 32,129 ECG recordings during a mean follow-up of 43.9 ± 35.9 months. The mean time-varying area under the ROC curve for the dynamic model was 0.738 ± 0.07, compared to 0.639 ± 0.03 for a static (i.e. baseline-only model). Feature analyses indicated dynamic changes in latent ECG representations, particularly those affecting the T-wave morphology, were of highest importance for model predictions. INTERPRETATION: Dynamic ML models and neural networks effectively leverage routinely collected longitudinal ECG recordings for personalised and updated predictions of malignant ventricular arrhythmias, outperforming static models. FUNDING: This publication is part of the project DEEP RISK ICD (with project number 452019308) of the research programme Rubicon which is (partly) financed by the Dutch Research Council (NWO). This research is partly funded by the Amsterdam Cardiovascular Sciences (personal grant F.V.Y.T).


Assuntos
Desfibriladores Implantáveis , Humanos , Feminino , Masculino , Morte Súbita Cardíaca , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/terapia , Eletrocardiografia , Redes Neurais de Computação
9.
Circ Heart Fail ; 17(1): e010879, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38126168

RESUMO

BACKGROUND: Deep learning models may combat widening racial disparities in heart failure outcomes through early identification of individuals at high risk. However, demographic biases in the performance of these models have not been well-studied. METHODS: This retrospective analysis used 12-lead ECGs taken between 2008 and 2018 from 326 518 patient encounters referred for standard clinical indications to Stanford Hospital. The primary model was a convolutional neural network model trained to predict incident heart failure within 5 years. Biases were evaluated on the testing set (160 312 ECGs) using the area under the receiver operating characteristic curve, stratified across the protected attributes of race, ethnicity, age, and sex. RESULTS: There were 59 817 cases of incident heart failure observed within 5 years of ECG collection. The performance of the primary model declined with age. There were no significant differences observed between racial groups overall. However, the primary model performed significantly worse in Black patients aged 0 to 40 years compared with all other racial groups in this age group, with differences most pronounced among young Black women. Disparities in model performance did not improve with the integration of race, ethnicity, sex, and age into model architecture, by training separate models for each racial group, or by providing the model with a data set of equal racial representation. Using probability thresholds individualized for race, age, and sex offered substantial improvements in F1 scores. CONCLUSIONS: The biases found in this study warrant caution against perpetuating disparities through the development of machine learning tools for the prognosis and management of heart failure. Customizing the application of these models by using probability thresholds individualized by race, ethnicity, age, and sex may offer an avenue to mitigate existing algorithmic disparities.


Assuntos
Aprendizado Profundo , Insuficiência Cardíaca , Humanos , Feminino , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/terapia , Estudos Retrospectivos , Etnicidade , Eletrocardiografia
10.
Interface Focus ; 13(6): 20230038, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38106921

RESUMO

To enable large in silico trials and personalized model predictions on clinical timescales, it is imperative that models can be constructed quickly and reproducibly. First, we aimed to overcome the challenges of constructing cardiac models at scale through developing a robust, open-source pipeline for bilayer and volumetric atrial models. Second, we aimed to investigate the effects of fibres, fibrosis and model representation on fibrillatory dynamics. To construct bilayer and volumetric models, we extended our previously developed coordinate system to incorporate transmurality, atrial regions and fibres (rule-based or data driven diffusion tensor magnetic resonance imaging (MRI)). We created a cohort of 1000 biatrial bilayer and volumetric models derived from computed tomography (CT) data, as well as models from MRI, and electroanatomical mapping. Fibrillatory dynamics diverged between bilayer and volumetric simulations across the CT cohort (correlation coefficient for phase singularity maps: left atrial (LA) 0.27 ± 0.19, right atrial (RA) 0.41 ± 0.14). Adding fibrotic remodelling stabilized re-entries and reduced the impact of model type (LA: 0.52 ± 0.20, RA: 0.36 ± 0.18). The choice of fibre field has a small effect on paced activation data (less than 12 ms), but a larger effect on fibrillatory dynamics. Overall, we developed an open-source user-friendly pipeline for generating atrial models from imaging or electroanatomical mapping data enabling in silico clinical trials at scale (https://github.com/pcmlab/atrialmtk).

11.
Nat Biomed Eng ; 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012305

RESUMO

Prolonged tachycardia-a risk factor for cardiovascular morbidity and mortality-can induce cardiomyopathy in the absence of structural disease in the heart. Here, by leveraging human patient data, a canine model of tachycardia and engineered heart tissue generated from human induced pluripotent stem cells, we show that metabolic rewiring during tachycardia drives contractile dysfunction by promoting tissue hypoxia, elevated glucose utilization and the suppression of oxidative phosphorylation. Mechanistically, a metabolic shift towards anaerobic glycolysis disrupts the redox balance of nicotinamide adenine dinucleotide (NAD), resulting in increased global protein acetylation (and in particular the acetylation of sarcoplasmic/endoplasmic reticulum Ca2+-ATPase), a molecular signature of heart failure. Restoration of NAD redox by NAD+ supplementation reduced sarcoplasmic/endoplasmic reticulum Ca2+-ATPase acetylation and accelerated the functional recovery of the engineered heart tissue after tachycardia. Understanding how metabolic rewiring drives tachycardia-induced cardiomyopathy opens up opportunities for therapeutic intervention.

13.
Front Cardiovasc Med ; 10: 1189293, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37849936

RESUMO

Background: Segmentation of computed tomography (CT) is important for many clinical procedures including personalized cardiac ablation for the management of cardiac arrhythmias. While segmentation can be automated by machine learning (ML), it is limited by the need for large, labeled training data that may be difficult to obtain. We set out to combine ML of cardiac CT with domain knowledge, which reduces the need for large training datasets by encoding cardiac geometry, which we then tested in independent datasets and in a prospective study of atrial fibrillation (AF) ablation. Methods: We mathematically represented atrial anatomy with simple geometric shapes and derived a model to parse cardiac structures in a small set of N = 6 digital hearts. The model, termed "virtual dissection," was used to train ML to segment cardiac CT in N = 20 patients, then tested in independent datasets and in a prospective study. Results: In independent test cohorts (N = 160) from 2 Institutions with different CT scanners, atrial structures were accurately segmented with Dice scores of 96.7% in internal (IQR: 95.3%-97.7%) and 93.5% in external (IQR: 91.9%-94.7%) test data, with good agreement with experts (r = 0.99; p < 0.0001). In a prospective study of 42 patients at ablation, this approach reduced segmentation time by 85% (2.3 ± 0.8 vs. 15.0 ± 6.9 min, p < 0.0001), yet provided similar Dice scores to experts (93.9% (IQR: 93.0%-94.6%) vs. 94.4% (IQR: 92.8%-95.7%), p = NS). Conclusions: Encoding cardiac geometry using mathematical models greatly accelerated training of ML to segment CT, reducing the need for large training sets while retaining accuracy in independent test data. Combining ML with domain knowledge may have broad applications.

14.
Europace ; 25(9)2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37712675

RESUMO

AIMS: Left ventricular ejection fraction (LVEF) is suboptimal as a sole marker for predicting sudden cardiac death (SCD). Machine learning (ML) provides new opportunities for personalized predictions using complex, multimodal data. This study aimed to determine if risk stratification for implantable cardioverter-defibrillator (ICD) implantation can be improved by ML models that combine clinical variables with 12-lead electrocardiograms (ECG) time-series features. METHODS AND RESULTS: A multicentre study of 1010 patients (64.9 ± 10.8 years, 26.8% female) with ischaemic, dilated, or non-ischaemic cardiomyopathy, and LVEF ≤ 35% implanted with an ICD between 2007 and 2021 for primary prevention of SCD in two academic hospitals was performed. For each patient, a raw 12-lead, 10-s ECG was obtained within 90 days before ICD implantation, and clinical details were collected. Supervised ML models were trained and validated on a development cohort (n = 550) from Hospital A to predict ICD non-arrhythmic mortality at three-year follow-up (i.e. mortality without prior appropriate ICD-therapy). Model performance was evaluated on an external patient cohort from Hospital B (n = 460). At three-year follow-up, 16.0% of patients had died, with 72.8% meeting criteria for non-arrhythmic mortality. Extreme gradient boosting models identified patients with non-arrhythmic mortality with an area under the receiver operating characteristic curve (AUROC) of 0.90 [95% confidence intervals (CI) 0.80-1.00] during internal validation. In the external cohort, the AUROC was 0.79 (95% CI 0.75-0.84). CONCLUSIONS: ML models combining ECG time-series features and clinical variables were able to predict non-arrhythmic mortality within three years after device implantation in a primary prevention population, with robust performance in an independent cohort.


Assuntos
Desfibriladores Implantáveis , Humanos , Feminino , Masculino , Seleção de Pacientes , Volume Sistólico , Função Ventricular Esquerda , Aprendizado de Máquina , Morte Súbita Cardíaca/etiologia , Morte Súbita Cardíaca/prevenção & controle , Prevenção Primária
15.
Europace ; 25(8)2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37622574

RESUMO

AIMS: Over the past 25 years there has been a substantial development in the field of digital electrophysiology (EP) and in parallel a substantial increase in publications on digital cardiology.In this celebratory paper, we provide an overview of the digital field by highlighting publications from the field focusing on the EP Europace journal. RESULTS: In this journey across the past quarter of a century we follow the development of digital tools commonly used in the clinic spanning from the initiation of digital clinics through the early days of telemonitoring, to wearables, mobile applications, and the use of fully virtual clinics. We then provide a chronicle of the field of artificial intelligence, a regulatory perspective, and at the end of our journey provide a future outlook for digital EP. CONCLUSION: Over the past 25 years Europace has published a substantial number of papers on digital EP, with a marked expansion in digital publications in recent years.


Assuntos
Cardiologia , Aplicativos Móveis , Humanos , Inteligência Artificial , Eletrofisiologia Cardíaca , Cognição
18.
J Cardiovasc Electrophysiol ; 34(5): 1164-1174, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36934383

RESUMO

BACKGROUND: Structural changes in the left atrium (LA) modestly predict outcomes in patients undergoing catheter ablation for atrial fibrillation (AF). Machine learning (ML) is a promising approach to personalize AF management strategies and improve predictive risk models after catheter ablation by integrating atrial geometry from cardiac computed tomography (CT) scans and patient-specific clinical data. We hypothesized that ML approaches based on a patient's specific data can identify responders to AF ablation. METHODS: Consecutive patients undergoing AF ablation, who had preprocedural CT scans, demographics, and 1-year follow-up data, were included in the study for a retrospective analysis. The inputs of models were CT-derived morphological features from left atrial segmentation (including the shape, volume of the LA, LA appendage, and pulmonary vein ostia) along with deep features learned directly from raw CT images, and clinical data. These were merged intelligently in a framework to learn their individual importance and produce the optimal classification. RESULTS: Three hundred twenty-one patients (64.2 ± 10.6 years, 69% male, 40% paroxysmal AF) were analyzed. Post 10-fold nested cross-validation, the model trained to intelligently merge and learn appropriate weights for clinical, morphological, and imaging data (AUC 0.821) outperformed those trained solely on clinical data (AUC 0.626), morphological (AUC 0.659), or imaging data (AUC 0.764). CONCLUSION: Our ML approach provides an end-to-end automated technique to predict AF ablation outcomes using deep learning from CT images, derived structural properties of LA, augmented by incorporation of clinical data in a merged ML framework. This can help develop personalized strategies for patient selection in invasive management of AF.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Veias Pulmonares , Humanos , Masculino , Feminino , Fibrilação Atrial/diagnóstico por imagem , Fibrilação Atrial/cirurgia , Fibrilação Atrial/etiologia , Estudos Retrospectivos , Resultado do Tratamento , Átrios do Coração/diagnóstico por imagem , Átrios do Coração/cirurgia , Tomografia Computadorizada por Raios X/métodos , Ablação por Cateter/efeitos adversos , Ablação por Cateter/métodos , Aprendizado de Máquina , Recidiva , Veias Pulmonares/diagnóstico por imagem , Veias Pulmonares/cirurgia
19.
Europace ; 25(5)2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-36932716

RESUMO

AIMS: There is a clinical spectrum for atrial tachyarrhythmias wherein most patients with atrial tachycardia (AT) and some with atrial fibrillation (AF) respond to ablation, while others do not. It is undefined if this clinical spectrum has pathophysiological signatures. This study aims to test the hypothesis that the size of spatial regions showing repetitive synchronized electrogram (EGM) shapes over time reveals a spectrum from AT, to AF patients who respond acutely to ablation, to AF patients without acute response. METHODS AND RESULTS: We studied n = 160 patients (35% women, 65.0 ± 10.4 years) of whom (i) n = 75 had AF terminated by ablation propensity matched to (ii) n = 75 without AF termination and (iii) n = 10 with AT. All patients had mapping by 64-pole baskets to identify areas of repetitive activity (REACT) to correlate unipolar EGMs in shape over time. Synchronized regions (REACT) were largest in AT, smaller in AF termination, and smallest in non-termination cohorts (0.63 ± 0.15, 0.37 ± 0.22, and 0.22 ± 0.18, P < 0.001). Area under the curve for predicting AF termination in hold-out cohorts was 0.72 ± 0.03. Simulations showed that lower REACT represented greater variability in clinical EGM timing and shape. Unsupervised machine learning of REACT and extensive (50) clinical variables yielded four clusters of increasing risk for AF termination (P < 0.01, χ2), which were more predictive than clinical profiles alone (P < 0.001). CONCLUSION: The area of synchronized EGMs within the atrium reveals a spectrum of clinical response in atrial tachyarrhythmias. These fundamental EGM properties, which do not reflect any predetermined mechanism or mapping technology, predict outcome and offer a platform to compare mapping tools and mechanisms between AF patient groups.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Humanos , Feminino , Masculino , Ablação por Cateter/métodos , Átrios do Coração , Fibrilação Atrial/cirurgia , Taquicardia
20.
EBioMedicine ; 89: 104462, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36773349

RESUMO

BACKGROUND: Ventricular arrhythmia (VA) precipitating sudden cardiac arrest (SCD) is among the most frequent causes of death and pose a high burden on public health systems worldwide. The increasing availability of electrophysiological signals collected through conventional methods (e.g. electrocardiography (ECG)) and digital health technologies (e.g. wearable devices) in combination with novel predictive analytics using machine learning (ML) and deep learning (DL) hold potential for personalised predictions of arrhythmic events. METHODS: This systematic review and exploratory meta-analysis assesses the state-of-the-art of ML/DL models of electrophysiological signals for personalised prediction of malignant VA or SCD, and studies potential causes of bias (PROSPERO, reference: CRD42021283464). Five electronic databases were searched to identify eligible studies. Pooled estimates of the diagnostic odds ratio (DOR) and summary area under the curve (AUROC) were calculated. Meta-analyses were performed separately for studies using publicly available, ad-hoc datasets, versus targeted clinical data acquisition. Studies were scored on risk of bias by the PROBAST tool. FINDINGS: 2194 studies were identified of which 46 were included in the systematic review and 32 in the meta-analysis. Pooling of individual models demonstrated a summary AUROC of 0.856 (95% CI 0.755-0.909) for short-term (time-to-event up to 72 h) prediction and AUROC of 0.876 (95% CI 0.642-0.980) for long-term prediction (time-to-event up to years). While models developed on ad-hoc sets had higher pooled performance (AUROC 0.919, 95% CI 0.867-0.952), they had a high risk of bias related to the re-use and overlap of small ad-hoc datasets, choices of ML tool and a lack of external model validation. INTERPRETATION: ML and DL models appear to accurately predict malignant VA and SCD. However, wide heterogeneity between studies, in part due to small ad-hoc datasets and choice of ML model, may reduce the ability to generalise and should be addressed in future studies. FUNDING: This publication is part of the project DEEP RISK ICD (with project number 452019308) of the research programme Rubicon which is (partly) financed by the Dutch Research Council (NWO). This research is partly funded by the Amsterdam Cardiovascular Sciences (personal grant F.V.Y.T).


Assuntos
Arritmias Cardíacas , Morte Súbita Cardíaca , Humanos , Arritmias Cardíacas/etiologia , Morte Súbita Cardíaca/etiologia , Eletrocardiografia , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...