Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Bone Miner Res ; 29(8): 1872-85, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24591126

RESUMO

Osteogenic factors are often used in orthopedics to promote bone growth, improve fracture healing, and induce spine fusion. Osteogenic oxysterols are naturally occurring molecules that were shown to induce osteogenic differentiation in vitro and promote spine fusion in vivo. The purpose of this study was to identify an osteogenic oxysterol more suitable for clinical development than those previously reported, and evaluate its ability to promote osteogenesis in vitro and spine fusion in rats in vivo. Among more than 100 oxysterol analogues synthesized, Oxy133 induced significant expression of osteogenic markers Runx2, osterix (OSX), alkaline phosphatase (ALP), bone sialoprotein (BSP), and osteocalcin (OCN) in C3H10T1/2 mouse embryonic fibroblasts and in M2-10B4 mouse marrow stromal cells. Oxy133-induced activation of an 8X-Gli luciferase reporter, its direct binding to Smoothened, and the inhibition of Oxy133-induced osteogenic effects by the Hedgehog (Hh) pathway inhibitor, cyclopamine, demonstrated the role of Hh pathway in mediating osteogenic responses to Oxy133. Oxy133 did not stimulate osteogenesis via BMP or Wnt signaling. Oxy133 induced the expression of OSX, BSP, and OCN, and stimulated robust mineralization in primary human mesenchymal stem cells. In vivo, bilateral spine fusion occurred through endochondral ossification and was observed in animals treated with Oxy133 at the fusion site on X-ray after 4 weeks and confirmed with manual assessment, micro-CT (µCT), and histology after 8 weeks, with equal efficiency to recombinant human bone morphogenetic protein-2 (rhBMP-2). Unlike rhBMP-2, Oxy133 did not induce adipogenesis in the fusion mass and resulted in denser bone evidenced by greater bone volume/tissue volume (BV/TV) ratio and smaller trabecular separation. Findings here suggest that Oxy133 has significant potential as an osteogenic molecule with greater ease of synthesis and improved time to fusion compared to previously studied oxysterols. Small molecule osteogenic oxysterols may serve as the next generation of bone anabolic agents for therapeutic development.


Assuntos
Desenvolvimento Ósseo/efeitos dos fármacos , Proteínas Hedgehog/fisiologia , Osteogênese/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Esteróis/farmacologia , Animais , Conservadores da Densidade Óssea/química , Conservadores da Densidade Óssea/farmacologia , Desenvolvimento Ósseo/genética , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Masculino , Camundongos , Estrutura Molecular , Osteogênese/genética , Ratos , Ratos Endogâmicos Lew , Esteróis/química
2.
J Cell Biochem ; 112(6): 1673-84, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21503957

RESUMO

Stimulation of bone formation by osteoinductive materials is of great clinical importance in spinal fusion surgery, repair of bone fractures, and in the treatment of osteoporosis. We previously reported that specific naturally occurring oxysterols including 20(S)-hydroxycholesterol (20S) induce the osteogenic differentiation of pluripotent mesenchymal cells, while inhibiting their adipogenic differentiation. Here we report the characterization of two structural analogues of 20S, Oxy34 and Oxy49, which induce the osteogenic and inhibit the adipogenic differentiation of bone marrow stromal cells (MSC) through activation of Hedgehog (Hh) signaling. Treatment of M2-10B4 MSC with Oxy34 or Oxy49 induced the expression of osteogenic differentiation markers Runx2, Osterix (Osx), alkaline phosphatase (ALP), bone sialoprotein (BSP), and osteocalcin (OCN), as well as ALP enzymatic activity and robust mineralization. Treatment with oxysterols together with PPARγ activator, troglitazone (Tro), inhibited mRNA expression for adipogenic genes PPARγ, LPL, and aP2, and inhibited the formation of adipocytes. Efficacy of Oxy34 and Oxy49 in stimulating bone formation in vivo was assessed using the posterolateral intertransverse process rat spinal fusion model. Rats receiving collagen implants with Oxy 34 or Oxy49 showed comparable osteogenic efficacy to BMP2/collagen implants as measured by radiography, MicroCT, and manual inspection. Histological analysis showed trabecular and cortical bone formation by oxysterols and rhBMP2 within the fusion mass, with robust adipogenesis in BMP2-induced bone and significantly less adipocytes in oxysterol-induced bone. These data suggest that Oxy34 and Oxy49 are effective novel osteoinductive molecules and may be suitable candidates for further development and use in orthopedic indications requiring local bone formation.


Assuntos
Adipogenia/efeitos dos fármacos , Hidroxicolesteróis/farmacologia , Osteogênese/efeitos dos fármacos , Fusão Vertebral , Coluna Vertebral/citologia , Coluna Vertebral/efeitos dos fármacos , Fosfatase Alcalina/metabolismo , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Masculino , Camundongos , Radiografia , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Coluna Vertebral/diagnóstico por imagem , Células Estromais/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...