Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 400: 130702, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615968

RESUMO

The bioconversion of lignocellulosic biomass into novel bioproducts is crucial for sustainable biorefineries, providing an integrated solution for circular economy objectives. The current study investigated a novel microwave-assisted acidic deep eutectic solvent (DES) pretreatment of waste cocoa pod husk (CPH) biomass to extract xylooligosaccharides (XOS). The sequential DES (choline chloride/citric acid, molar ratio 1:1) and microwave (450W) pretreatment of CPH biomass was effective in 67.3% xylan removal with a 52% XOS yield from total xylan. Among different XOS of varying degrees of polymerization, a higher xylobiose content corresponding to 69.3% of the total XOS (68.22 mg/g CPH) from liquid fraction was observed. Enzymatic hydrolysis of residual xylan from pretreated CPH biomass with low commercial xylanase (10 IU/g) concentration yielded 24.2% XOS. The MW-ChCl/citric acid synergistic pretreatment approach holds great promise for developing a cost-effective and environmentally friendly method contributing to the sustainable production of XOS from agricultural waste streams.


Assuntos
Biomassa , Cacau , Solventes Eutéticos Profundos , Glucuronatos , Micro-Ondas , Oligossacarídeos , Oligossacarídeos/química , Cacau/química , Cacau/metabolismo , Hidrólise , Solventes Eutéticos Profundos/química , Xilanos , Biotecnologia/métodos , Ácidos/química , Solventes/química
2.
J Sci Food Agric ; 104(6): 3594-3605, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38149759

RESUMO

BACKGROUND: In this study, a biocompatible nano-carrying platform using chitosan (ChI) and chondroitin sulfate (ChS) was developed for the encapsulation of cobia liver oil (CBLO) to prevent its oxidation and improve its absorption. An ionic gelation method was applied to encapsulate CBLO with different weight ratios (from 1.0 to 1.5) to obtain ChS-ChI nano-capsules (ChS-ChI@CBLO NCs). RESULTS: Morphological observations of the nano-capsules revealed a spherical shape and diameter around 267-381 nm. The maximum loading capacity (LC) and encapsulation efficiency (EE) for ChS-ChI@CBLO NCs estimated by thermogravimetric analysis (TGA) and derivative thermogravimetric (DTG) analysis were 25.7% and 56.2%, respectively. The structural stability of ChS-ChI@CBLO NCs was confirmed through differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis; moreover DSC also further confirmed the oxidative stability of ChS-ChI@CBLO NCs. Fourier-transform infrared (FTIR) spectra confirmed the excellent stability of ChS-ChI@CBLO NCs against high temperature and sunlight exposure. Biocompatibility analysis also verified the non-toxicity of ChS-ChI@CBLO NCs, further indicating safety and potential application in complex-nutritional supplements. CONCLUSION: Nano-degree of ChS-ChI@CBLO NCs has a loading capacity and encapsulation efficiency of around 16.5 ~ 25.7% and 33.4 ~ 56.2%, respectively, for encapsulation of CBLO. Characterization results also indicate that ChS-ChI@CBLO NCs display high oxidative stability against long-term, hyperthermal, and sunlight exposure. Bioassay results confirm that the ChS-ChI@CBLO NCs are safe and non-toxic. This study demonstrates that nano-capsules are also beneficial in preventing sensitive compounds from metamorphosis, and are non-toxic. These materials are suitable for use in the food and pharmaceutical industries. © 2023 Society of Chemical Industry.


Assuntos
Quitosana , Animais , Fenômenos Químicos , Oxirredução , Cápsulas/química , Quitosana/química , Óleos de Peixe , Luz Solar , Estresse Oxidativo , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Bioresour Technol ; 390: 129829, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37839650

RESUMO

Recent years have seen a transition to a sustainable circular economy model that uses agro-industrial waste biomass waste to produce energy while reducing trash and greenhouse gas emissions. Biogas production from lignocellulosic biomass (LCB) is an alternative option in the hunt for clean and renewable fuels. Different approaches are employed to transform the LCB to biogas, including pretreatment, anaerobic digestion (AD), and biogas upgradation to biomethane. To maintain process stability and improve AD performance, machine learning (ML) tools are being applied in real-time monitoring, predicting, and optimizing the biogas production process. An environmental life cycle assessment approach for biogas production systems is essential to calculate greenhouse gas emissions. The current review presents a detailed overview of the utilization of agro-waste for sustainable biogas production. Different methods of waste biomass processing and valorization are discussed that contribute towards developing an efficient agro-waste to biogas-based circular economy.


Assuntos
Resíduos de Alimentos , Gases de Efeito Estufa , Resíduos Industriais , Biocombustíveis , Biomassa
4.
Heliyon ; 9(7): e18316, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37519746

RESUMO

The development of sustainable biorefineries and bioeconomy has been the mandate of most of the governments with major focus on restricting the climate change concerns and finding new strategies to maintain the global food supply chain. Xylooligosaccharides (XOS) are short-chain oligomers which due to their excellent prebiotic potential in the nutraceutical sector has attracted intense research focus in the recent years. The agro-industrial crop and food waste can be utilized for the production of XOS which are derived from hemicellulose fraction (xylan) of the lignocellulosic materials. The extraction of xylan, is traditionally achieved by acidic and alkaline pretreatments which, however, have limited industrial applications. The inclusion of cutting-edge and environmentally beneficial pretreatment methods and technologies such as deep eutectic solvents and green catalysts are preferred. Moreover, the extraction of xylans from biomass using combinatorial pretreatment approaches may help in economizing the whole bioprocess. The current review outlines the factors involved in the xylan extraction and depolymerization processes from different lignocellulosic biomass and the subsequent enzymatic hydrolysis for XOS production. The different types of oligosaccharides and their prebiotic potential for the growth of healthy gut bacteria have also been explained. The introduction of modern molecular technologies has also made it possible to identify enzymes and microorganisms with the desired characteristics for usage in XOS industrial production processes.

5.
Sci Total Environ ; 886: 163972, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37164089

RESUMO

In view of the global climate change concerns, the society is approaching towards the development of 'green' and renewable energies for sustainable future. The non-renewable fossil fuels may be largely replaced by renewable energy sources, which could facilitate sustainable growth, energy development and lessen the reliance on conventional energy sources. The traditional methods employed in biorefineries to estimate the data values for the biofuel production systems are often complicated, time-consuming and labour-intensive. Modern machine learning (ML) technologies hold enormous potential in managing high-dimensional complex scientific tasks and improving decision-making in energy distribution networks and systems. The data-driven probabilistic ML algorithms could be applied to smart biofuel systems and networks that may reduce the cost of experimental research while providing accurate estimates of product yields. The current review demonstrates a thorough understanding of the application of different ML models to regulate and monitor the production of biofuels from waste biomass through prediction, optimization and real-time monitoring. The in-depth analysis of the most recent advancements in ML-assisted biofuel production methods, including thermochemical and biochemical processes is provided. Moreover, the ML models in addressing the issues of biofuel supply chains, case studies, scientific challenges and future direction in ML applications are also summarized.


Assuntos
Biocombustíveis , Lignina , Biotecnologia/métodos , Biomassa
6.
Bioresour Technol ; 381: 129145, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37169207

RESUMO

The idea of environment friendly and affordable renewable energy resources has prompted the industry to focus on the set up of biorefineries for sustainable bioeconomy. Lignocellulosic biomass (LCB) is considered as an abundantly available renewable feedstock for the production of biofuels which can potentially reduce the dependence on petrochemical refineries. By utilizing various conversion technologies, an integrated biorefinery platform of LCB can be created, embracing the idea of the 'circular bioeconomy'. The development of effective pretreatment methods and biocatalytic systems by various bioengineering and machine learning approaches could reduce the bioprocessing costs, thereby making biomass-based biorefinery more sustainable. This review summarizes the development and advances in the lignocellulosic biorefineries from the LCB to the final product stage using various different state-of-the-art approaches for the progress of circular bioeconomy. The life cycle assessment which generates knowledge on the environmental impacts related to biofuel production chains is also summarized.


Assuntos
Biocombustíveis , Lignina , Biomassa , Bioengenharia
7.
J Food Sci Technol ; 60(6): 1711-1722, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37187986

RESUMO

Chondroitin sulfate (ChS) from marine sources is gaining attention. The purpose of this study was to extract ChS from jumbo squid cartilage (Dosidicus gigas) using ultrasound-assisted enzymatic extraction (UAEE). An ultrasound with protease assistance, including either alcalase, papain or Protin NY100 was used to extract ChS. The results showed that alcalase had the best extraction efficiency. The response surface methodology was employed to evaluate the relationship between extraction conditions and extraction yield of ChS. The ridge max analysis revealed a maximum extraction yield of 11.9 mg ml- 1 with an extraction temperature of 59.40 °C, an extraction time of 24.01 min, a pH of 8.25, and an alcalase concentration of 3.60%. Compared to ethanol precipitation, purification using a hollow fiber dialyzer (HFD) had a higher extraction yield of 62.72% and purity of 85.96%. The structure characteristics of ChS were identified using FTIR, 1 H-NMR, and 13 C-NMR to confirm that the purified ChS structure was present in the form of chondroitin-4-sulfate and chondroitin-6-sulfate. The results of this study provide a green and efficient process for extraction and purification of ChS and are essential for the use of ChS for the development and production of nutrient food products or pharmaceuticals. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-023-05701-7.

8.
J Food Sci Technol ; 60(5): 1521-1529, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37033307

RESUMO

Bitter gourd extract (BGE) is rich in antioxidants and anti-diabetic components that promote good human health; however, its bitter taste makes it challenging to use in food. In this study, the effect of carboxymethyl cellulose and ß-cyclodextrin (ß-CD) on the bitterness and properties of BGE were investigated. The bitterness intensity was evaluated by the trained sensory panel, and the physicochemical properties were also determined, including viscosity, total saponin, polyphenol content, antioxidant capacity, and α-amylase inhibition activity. It was found that the bitterness of BGE with 0.75%, w/v ß-cyclodextrin decreased significantly by more than 90%. Additionally, FTIR, 1 H-NMR, and thermogravimetric analysis of BGE supplemented with ß-CD confirmed the formation of a complex between ß-CD and components of BGE. The findings of the current study also reveal that debittering agents did not inhibit the bioactivities of BGE.

9.
J Food Sci Technol ; 60(4): 1425-1434, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36936123

RESUMO

The need for high-quality dietary proteins has risen over the years with improvements in the quality of life. Deep eutectic solvents (DESs) have been regarded as potential green alternatives to conventional organic solvents for protein extraction from press cake biomass, meeting the needs of sustainable development goals. Sacha inchi seed meal (SIM) is generated as a by-product of the seed oil extraction industries containing high protein content. The current study presents a novel ultrasound assisted DES method for the extraction of SIM protein in a sequential manner. Four different DESs were screened, out of which choline chloride (ChCl)/glycerol (1:2) gave promising results in protein recovery and was further selected. The sequential ultrasound-ChCl/glycerol could effectively extract high total crude protein content (77.43%) from SIM biomass compared to alone ultrasound (29.21%) or ChCl/glycerol (58.32%) treatment strategies. The SIM protein extracted from ultrasound-ChCl/glycerol exhibited high solubility (94.39%) at alkaline pH and highest in vitro digestibility (71.16%) by digestive enzymes (pepsin and trypsin). The protein characterization by SDS-PAGE and FTIR elucidated the structural properties and presence of different functional groups of SIM protein. Overall, the sequential ultrasound-ChCl/glycerol revealed its significant potential for one-step biorefining of the waste Sacha inchi meal biomass for circular bioeconomy.

10.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36902305

RESUMO

Truffles are known worldwide for their peculiar taste, aroma, and nutritious properties, which increase their economic value. However, due to the challenges associated with the natural cultivation of truffles, including cost and time, submerged fermentation has turned out to be a potential alternative. Therefore, in the current study, the cultivation of Tuber borchii in submerged fermentation was executed to enhance the production of mycelial biomass, exopolysaccharides (EPSs), and intracellular polysaccharides (IPSs). The mycelial growth and EPS and IPS production was greatly impacted by the choice and concentration of the screened carbon and nitrogen sources. The results showed that sucrose (80 g/L) and yeast extract (20 g/L) yielded maximum mycelial biomass (5.38 ± 0.01 g/L), EPS (0.70 ± 0.02 g/L), and IPS (1.76 ± 0.01 g/L). The time course analysis of truffle growth revealed that the highest growth and EPS and IPS production was observed on the 28th day of the submerged fermentation. Molecular weight analysis performed by the gel permeation chromatography method revealed a high proportion of high-molecular-weight EPS when 20 g/L yeast extract was used as media and the NaOH extraction step was carried out. Moreover, structural analysis of the EPS using Fourier-transform infrared spectroscopy (FTIR) confirmed that the EPS was ß-(1-3)-glucan, which is known for its biomedical properties, including anti-cancer and anti-microbial activities. To the best of our knowledge, this study represents the first FTIR analysis for the structural characterization of ß-(1-3)-glucan (EPS) produced from Tuber borchii grown in submerged fermentation.


Assuntos
Glucanos , Polissacarídeos , Fermentação , Peso Molecular , Polissacarídeos/química
11.
Sci Total Environ ; 861: 160560, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36574559

RESUMO

The grave concerns arisen as a result of environmental pollution and diminishing fossil fuel reserves in the 21st century have shifted the focus on the use of sustainable and environment friendly alternative resources. Lignocellulosic biomass constituted by cellulose, hemicellulose and lignin is an abundantly available natural bioresource. Lignin, a natural biopolymer has over the years gained much importance as a high value material with commercial importance. The present review provides an in-depth knowledge on the journey of lignin from being considered a roadblock to a bridge connecting diverse industries with widescale applications. The successful valorization of lignin for the production of bio-based platform chemicals and fuels has been the subject of intensive investigation. A deeper understanding of lignin characteristics and factors governing the biomass conversion into valuable products can support improved biomass consumption. The components of lignocellulosic biomass might be totally transformed into a variety of value-added products with the improvements in bioprocess techniques that valorize lignin. In this review, the recent advances in the lignin extraction and depolymerization methods that may help in achieving the cost-economics of the bioprocess are summarized and compared. The industrial potential of lignin-derived products such as aromatics, biopolymers, biofuels and agrochemicals are also outlined. Additionally, assessment of the recent research trends in lignin valorization into value-added chemicals has been done and present scenario of technological-industrial applications of lignin with economic perspectives is highlighted.


Assuntos
Biocombustíveis , Lignina , Biomassa , Tecnologia
12.
Bioresour Technol ; 360: 127631, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35850394

RESUMO

Increasing reliance on non-renewable fuels has shifted research attention to environmentally friendly and sustainable energy sources.The inherently recalcitrant nature of lignocellulosic biomass (LCB) makes downstream processing of the bioprocess challenging. Deep eutectic solvents (DESs) are popular and inexpensive green liquids found effective for LCB valorisation. DESs have negligible vapor-pressure and are non-flammable, recyclable, cost-economic, and thermochemically stable. This review provides a detailed overview on the DESs types, properties and their role in effective delignification and enzymatic digestibility of polysaccharides for cost-effective conversion of LCB into biofuels and bioproducts. The conglomeration of DESs with assistive pretreatment techniques can augment the process of biomass deconstruction. The current challenges in upscaling the DESs-based pretreatment technology up to commercial scale is summarized, with possible solutions and future directions. These insights would fill the knowledge-gaps to towards development of lignocellulosic biorefineries and to address the global energy crisis and environment issues.


Assuntos
Solventes Eutéticos Profundos , Lignina , Biomassa , Lignina/química , Solventes/química
13.
Bioresour Technol ; 333: 125191, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33951579

RESUMO

This work aimed to study the hydrolysis of ionic liquid (IL) pretreated sugarcane tops (SCT) biomass with in-house developed IL-stable enzyme preparation, from a fungal isolate Aspergillus flavus PN3. Maximum reducing sugar yield (181.18 mg/g biomass) was obtained from tris (2-hydroxyethyl) methylammonium-methylsulfate ([TMA]MeSO4) pretreated biomass. Pretreatment parameters were optimized to attain enhanced sugar yield (1.57-fold). Functional mechanism of IL mediated pretreatment of SCT biomass was elucidated by SEM, XRD, FTIR and 1H NMR studies. Furthermore, nanobiocatalysts prepared by immobilization of enzyme preparation by covalent coupling on magnetic nanoparticles functionalized with amino-propyl triethoxysilane, were assessed for their hydrolytic efficacy and reusability. Nanobiocatalysts were examined by SEM and FTIR analysis for substantiation of immobilization. This is the first ever report of application of magnetic nanobiocatalysts for saccharification of IL-pretreated sugarcane tops biomass.


Assuntos
Líquidos Iônicos , Saccharum , Biocombustíveis , Biomassa , Hidrólise
14.
Bioresour Technol ; 289: 121611, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31207414

RESUMO

The current study presents the first ever report of surfactant (Tween-20) assisted ionic liquid IL, (1-ethyl-3-methylimidazolium methane sulphonate [Emim][MeSO3]) pretreatment of Parthenium hysterophorus biomass, its saccharification by in-house developed enzyme cocktail from Aspergillus aculeatus PN14, and fermentation of sugars to bioethanol under consolidated bioprocess. Optimization of pretreatment process variables viz. biomass loading, temperature and time, resulted in enhanced sugar yield (40.1%) upon saccharification of pretreated biomass with IL-stable cellulase and xylanase enzymes from an IL-tolerant newly isolated fungus Aspergillus aculeatus PN14. Physicochemical analysis of surfactant assisted IL-pretreated biomass by SEM, FT-IR and XRD provided molecular insights into inter/intra molecular ultrastructural changes in the biomass that eased the saccharification. Thorough understanding of chemical/molecular structure of biomass may help developing customized pretreatment regimes of apt severity which might result in enhanced accessibility of enzymes to biomass, and hence more sugar content.


Assuntos
Celulase , Líquidos Iônicos , Biomassa , Hidrólise , Espectroscopia de Infravermelho com Transformada de Fourier , Tensoativos
15.
Bioresour Technol ; 285: 121319, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30981012

RESUMO

Ionic liquid (IL) pretreatment represents an effective strategy for effective fractionation of lignocellulosic biomass (LB) to fermentable sugars in a biorefinery. Optimization of combinatorial pretreatment of sugarcane bagasse (SCB) with IL (1-butyl-3-methylimidazolium chloride [Bmim]Cl) and surfactant (PEG-8000) resulted in enhanced sugar yield (16.5%) upon enzymatic saccharification. The saccharification enzymes (cellulase and xylanase) used in the current study were in-house produced from a novel IL-tolerant fungal strain Aspergillus assiutensis VS34, isolated from chemically polluted soil, which produced adequately IL-stable enzymes. This is the first ever report of IL-stable cellulase/xylanase enzyme from Aspergillus assiutensis. To get the mechanistic insights of combinatorial pretreatment physicochemical analysis of variously pretreated biomass was executed using SEM, FT-IR, XRD, and 1H NMR studies. The combined action of IL, surfactant and ultrasound had very severe and distinct effects on the ultrastructure of biomass that subsequently resulted in enhanced accessibility of saccharification enzymes to biomass, and increased sugar yield.


Assuntos
Celulase , Líquidos Iônicos , Saccharum , Aspergillus , Biomassa , Celulose , Hidrólise , Espectroscopia de Infravermelho com Transformada de Fourier , Tensoativos
16.
Bioresour Technol ; 267: 560-568, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30053714

RESUMO

Biorefining of lignocellulosic biomass to fuels/chemicals has recently gained immense research momentum. Current study reports sequential pretreatment of sunflower stalk (SFS) biomass in a combinatorial regime involving alkali (NaOH) and ionic liquid 1-butyl-3-methyl imidazolium chloride. The pretreatment enhanced the enzymatic digestibility, and resulted in increased sugar yield (163.42 mg/g biomass) as compared to standalone pretreatment using alkali (97.38 mg/g biomass) or ionic liquid (79.6 mg/g biomass). Ultrastructural and morphological analysis (FTIR and SEM) of pretreated biomass showed that the combined ionic liquid and alkali pretreatment causes more drastic alterations in the biomass ultrastructure as compared to alone ionic liquid or alkali pretreatment. Thus, combined pretreatment led to ease of enzymatic saccharification and consequent increased sugar yield, and this observation was corroborated by physicochemical analysis of the pretreated biomass. The pretreated SFS biomass was subjected to consolidated bioprocessing for its direct conversion to bioethanol in a single vessel.


Assuntos
Biocombustíveis , Helianthus , Álcalis , Biomassa , Etanol , Hidrólise , Líquidos Iônicos
17.
Int J Biol Macromol ; 115: 663-671, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29684454

RESUMO

Huge industrial application potential of xylanases is stalled due to lack of process suitable characteristics like thermostability, broad range pH stability, and high catalytic efficiency in the available enzymes. Current study presents the first ever report of a pH stable (pH 6-11) and thermostable (80-100 °C) xylanase from a novel strain of Aspergillus terreus S9. The xylanase was purified to homogeneity (6.67-fold) by ammonium sulphate precipitation, ion exchange chromatography, and molecular exclusion chromatography. SDS-PAGE analysis revealed an estimated molecular mass of ~33 kDa for the xylanase. Metal ions and surfactants such as K+, Ca2+, Mn2+, Mg2+, CTAB and Tween-80 enhanced the xylanase activity while Cu2+ and Hg2+ strongly inhibited the activity. Kinetic parameters i.e. Km, Vmax,Kcat and Kcat/Km of A. terreus S9 xylanase were 2.94 mg/ml, 285.71 µmol/min/mg, 1587.28 s-1and 539.89 ml/mg/s, respectively. The substrate specificity confirmed the true endoxylanolytic nature of xylanase. The conserved domain analysis, and Blastn and Blastx results showed that the xylanase belonged to GH10 family. A. terreus S9 xylanase may be used as model system for understanding the molecular basis of robust nature of enzymes, and the knowledge generated may help designing novel enzymes that are suitable for industrial applications.


Assuntos
Aspergillus/enzimologia , Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/metabolismo , Fibras na Dieta/metabolismo , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Hidrólise , Indústrias , Cinética , Modelos Moleculares , Peso Molecular , Estrutura Secundária de Proteína , Especificidade por Substrato , Temperatura , Xilanos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...