Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chembiochem ; : e202400436, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858172

RESUMO

Forming nano-assemblies is essential for delivering DNA conjugates into cells, with the DNA density in the nano-assembly playing an important role in determining the uptake efficiency. In this study, we developed a strategy for the facile synthesis of DNA strands bearing perfluoroalkyl (RF) groups (RF-DNA conjugates) and investigated how they affect cellular uptake. An RF-DNA conjugate bearing a long RF group at the DNA terminus forms a nano-assembly with a high DNA density, which results in greatly enhanced cellular uptake. The uptake mechanism is mediated by clathrin-dependent endocytosis. The use of RF groups to densely assemble negatively charged DNA is a useful strategy for designing drug delivery carriers.

2.
Obesity (Silver Spring) ; 18(10): 1888-94, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20111015

RESUMO

Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is synthesized as a type I transmembrane protein, which is proteolytically cleaved to release a soluble form via members of the a disintegrin and metalloproteinase (ADAM) family of proteolytic enzymes. This study was designed to elucidate the molecular mechanism underlying insulin-induced HB-EGF shedding in adipocytes in vitro. The 3T3-L1 adipocytes with stable expression of alkaline phosphatase (AP)-tagged proHB-EGF (3T3-L1/HB-EGF-AP adipocytes) were developed and AP activities of conditioned media were determined. Using 3T3-L1/HB-EGF-AP adipocytes, we demonstrated that insulin induces HB-EGF shedding in differentiated 3T3-L1 adipocytes in a dose- and time-dependent manner. There is no significant increase in insulin-induced HB-EGF shedding in undifferentiated 3T3-L1 preadipocytes. Studies with metalloprotease inhibitors suggested that insulin-induced HB-EGF shedding in adipocytes is mediated at least in part via ADAM17. Treatment with recombinant HB-EGF results in a dose- and time-dependent increase in HB-EGF shedding in adipocytes, which is significantly suppressed by pharmacologic blockade of ADAM17 (P < 0.01). Moreover, insulin-induced HB-EGF shedding in adipocytes is significantly inhibited by AG1478, an EGF receptor antagonist (P < 0.01). This study provides in vitro evidence that insulin induces HB-EGF shedding in 3T3-L1 adipocytes. Our data also suggest the role of ADAM17 in insulin-induced HB-EGF shedding in adipocytes.


Assuntos
Proteínas ADAM/metabolismo , Adipócitos/metabolismo , Insulina/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Células 3T3-L1 , Proteína ADAM17 , Adipócitos/efeitos dos fármacos , Fosfatase Alcalina/metabolismo , Animais , Diferenciação Celular , Receptores ErbB/antagonistas & inibidores , Fator de Crescimento Semelhante a EGF de Ligação à Heparina , Insulina/farmacologia , Camundongos , Quinazolinas , Proteínas Recombinantes , Tirfostinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA