Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Clin Cancer Res ; 43(1): 58, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413979

RESUMO

BACKGROUND: Advanced prostate cancer (PC) is characterized by insensitivity to androgen deprivation therapy and chemotherapy, resulting in poor outcome for most patients. Thus, advanced PC urgently needs novel therapeutic strategies. Mounting evidence points to splicing dysregulation as a hallmark of advanced PC. Moreover, pharmacologic inhibition of the splicing process is emerging as a promising option for this disease. METHOD: By using a representative androgen-insensitive PC cell line (22Rv1), we have investigated the genome-wide transcriptomic effects underlying the cytotoxic effects exerted by three splicing-targeting drugs: Pladienolide B, indisulam and THZ531. Bioinformatic analyses were performed to uncover the gene structural features underlying sensitivity to transcriptional and splicing regulation by these treatments. Biological pathways altered by these treatments were annotated by gene ontology analyses and validated by functional experiments in cell models. RESULTS: Although eliciting similar cytotoxic effects on advanced PC cells, Pladienolide B, indisulam and THZ531 modulate specific transcriptional and splicing signatures. Drug sensitivity is associated with distinct gene structural features, expression levels and cis-acting sequence elements in the regulated exons and introns. Importantly, we identified PC-relevant genes (i.e. EZH2, MDM4) whose drug-induced splicing alteration exerts an impact on cell survival. Moreover, computational analyses uncovered a widespread impact of splicing-targeting drugs on intron retention, with enrichment in genes implicated in pre-mRNA 3'-end processing (i.e. CSTF3, PCF11). Coherently, advanced PC cells displayed high sensitivity to a specific inhibitor of the cleavage and polyadenylation complex, which enhances the effects of chemotherapeutic drugs that are already in use for this cancer. CONCLUSIONS: Our study uncovers intron retention as an actionable vulnerability for advanced PC, which may be exploited to improve therapeutic management of this currently incurable disease.


Assuntos
Processamento Alternativo , Anilidas , Compostos de Epóxi , Macrolídeos , Neoplasias da Próstata , Pirimidinas , Sulfonamidas , Masculino , Humanos , Íntrons , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Antagonistas de Androgênios , Androgênios , Splicing de RNA , Proteínas Proto-Oncogênicas/genética , Proteínas de Ciclo Celular/genética
2.
Cell Rep Med ; 5(2): 101411, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38325381

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is characterized by extremely poor prognosis. PDAC presents with molecularly distinct subtypes, with the basal-like one being associated with enhanced chemoresistance. Splicing dysregulation contributes to PDAC; however, its involvement in subtype specification remains elusive. Herein, we uncover a subtype-specific splicing signature associated with prognosis in PDAC and the splicing factor Quaking (QKI) as a determinant of the basal-like signature. Single-cell sequencing analyses highlight QKI as a marker of the basal-like phenotype. QKI represses splicing events associated with the classical subtype while promoting basal-like events associated with shorter survival. QKI favors a plastic, quasi-mesenchymal phenotype that supports migration and chemoresistance in PDAC organoids and cell lines, and its expression is elevated in high-grade primary tumors and metastatic lesions. These studies identify a splicing signature that defines PDAC subtypes and indicate that QKI promotes an undifferentiated, plastic phenotype, which renders PDAC cells chemoresistant and adaptable to environmental changes.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Processamento Alternativo/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Linhagem Celular , Fenótipo
3.
Methods Mol Biol ; 2770: 37-52, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38351445

RESUMO

Transcriptomic analyses of germ cells at different stages of differentiation have shed light on the transcriptional and post-transcriptional mechanisms regulating gene expression that ensure the correct progression of spermatogenesis and male fertility. In this chapter, we describe a method to isolate meiotic and post-meiotic germ cells, based on gravimetric sedimentation, starting from a testicular germ cell suspension isolated from a single adult mouse. We also describe how to assess the purity and quality of the collected fractions of germ cells and how to optimize the extraction from these samples of RNA for subsequent RNA-sequencing experiment. In our experience, this protocol is suitable for germ cell isolation and transcriptomic analysis for mouse models with spermatogenic defects, overcoming the limits that reduced fertility poses to the obtaining of experimental animals.


Assuntos
Espermatogênese , Testículo , Camundongos , Masculino , Animais , Espermatogênese/genética , Células Germinativas , Perfilação da Expressão Gênica , RNA/genética
4.
Nucleic Acids Res ; 52(8): 4167-4184, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38324473

RESUMO

Sam68 and SLM2 are paralog RNA binding proteins (RBPs) expressed in the cerebral cortex and display similar splicing activities. However, their relative functions during cortical development are unknown. We found that these RBPs exhibit an opposite expression pattern during development. Sam68 expression declines postnatally while SLM2 increases after birth, and this developmental pattern is reinforced by hierarchical control of Sam68 expression by SLM2. Analysis of Sam68:Slm2 double knockout (Sam68:Slm2dko) mice revealed hundreds of exons that respond to joint depletion of these proteins. Moreover, parallel analysis of single and double knockout cortices indicated that exons regulated mainly by SLM2 are characterized by a dynamic splicing pattern during development, whereas Sam68-dependent exons are spliced at relatively constant rates. Dynamic splicing of SLM2-sensitive exons is completely suppressed in the Sam68:Slm2dko developing cortex. Sam68:Slm2dko mice die perinatally with defects in neurogenesis and in neuronal differentiation, and develop a hydrocephalus, consistent with splicing alterations in genes related to these biological processes. Thus, our study reveals that developmental control of separate Sam68 and Slm2 paralog genes encoding homologous RBPs enables the orchestration of a dynamic splicing program needed for brain development and viability, while ensuring a robust redundant mechanism that supports proper cortical development.


Assuntos
Córtex Cerebral , Splicing de RNA , Proteínas de Ligação a RNA , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Córtex Cerebral/metabolismo , Córtex Cerebral/embriologia , Córtex Cerebral/crescimento & desenvolvimento , Éxons/genética , Regulação da Expressão Gênica no Desenvolvimento , Camundongos Knockout , Neurogênese/genética , Neurônios/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
6.
Molecules ; 28(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38005235

RESUMO

Triple-negative breast cancer (TNBC) is one of the most heterogeneous and aggressive breast cancer subtypes with a high risk of death on recurrence. To date, TNBC is very difficult to treat due to the lack of an effective targeted therapy. However, recent advances in the molecular characterization of TNBC are encouraging the development of novel drugs and therapeutic combinations for its therapeutic management. In the present review, we will provide an overview of the currently available standard therapies and new emerging therapeutic strategies against TNBC, highlighting the promises that newly developed small molecules, repositioned drugs, and combination therapies have of improving treatment efficacy against these tumors.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Terapia Combinada , Descoberta de Drogas
7.
ACS Pharmacol Transl Sci ; 6(7): 1087-1103, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37470018

RESUMO

Despite intensive efforts, no inhibitors of the Wnt/ß-catenin signaling pathway have been approved so far for the clinical treatment of cancer. We synthesized novel N-(heterocyclylphenyl)benzenesulfonamides as ß-catenin inhibitors. Compounds 5-10 showed strong inhibition of the luciferase activity. Compounds 5 and 6 inhibited the MDA-MB-231, HCC1806, and HCC1937 TNBC cells. Compound 9 induced in vitro cell death in SW480 and HCT116 cells and in vivo tumorigenicity of a human colorectal cancer line HCT116. In a co-immunoprecipitation study in HCT116 cells transfected with Myc-tagged T-cell factor 4 (Tcf-4), compound 9 abrogated the association between ß-catenin and Tcf-4. The crystallographic analysis of the ß-catenin Armadillo repeats domain revealed that compound 9 and Tcf-4 share a common binding site within the hotspot binding region close to Lys508. To our knowledge, compound 9 is the first small molecule ligand of this region to be reported. These results highlight the potential of this novel class of ß-catenin inhibitors as anticancer agents.

8.
Front Oncol ; 12: 988310, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35957906
9.
Front Oncol ; 12: 880654, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35530315

RESUMO

Triple-negative breast cancer (TNBC) represents the most aggressive breast cancer subtype. Poor prognosis in TNBC is partly due to lack of efficacious targeted therapy and high propensity to metastasize. Dysregulation of alternative splicing has recently emerged as a trait of TNBC, suggesting that unveiling the molecular mechanisms underlying its regulation could uncover new druggable cancer vulnerabilities. The oncogenic kinase NEK2 is significantly upregulated in TNBC and contributes to shaping their unique splicing profile. Herein, we found that NEK2 interacts with the RNA binding protein Sam68 in TNBC cells and that NEK2-mediated phosphorylation of Sam68 enhances its splicing activity. Genome-wide transcriptome analyses identified the splicing targets of Sam68 in TNBC cells and revealed a common set of exons that are co-regulated by NEK2. Functional annotation of splicing-regulated genes highlighted cell migration and spreading as biological processes regulated by Sam68. Accordingly, Sam68 depletion reduces TNBC cell migration and invasion, and these effects are potentiated by the concomitant inhibition of NEK2 activity. Our findings indicate that Sam68 and NEK2 functionally cooperate in the regulation of a splicing program that sustains the pro-metastatic features of TNBC cells.

10.
J Exp Clin Cancer Res ; 40(1): 397, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930366

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is the most heterogeneous and malignant subtype of breast cancer (BC). TNBC is defined by the absence of expression of estrogen, progesterone and HER2 receptors and lacks efficacious targeted therapies. NEK2 is an oncogenic kinase that is significantly upregulated in TNBC, thereby representing a promising therapeutic target. NEK2 localizes in the nucleus and promotes oncogenic splice variants in different cancer cells. Notably, alternative splicing (AS) dysregulation has recently emerged as a featuring trait of TNBC that contributes to its aggressive phenotype. METHODS: To investigate whether NEK2 modulates TNBC transcriptome we performed RNA-sequencing analyses in a representative TNBC cell line (MDA-MB-231) and results were validated in multiple TNBC cell lines. Bioinformatics and functional analyses were carried out to elucidate the mechanism of splicing regulation by NEK2. Data from The Cancer Genome Atlas were mined to evaluate the potential of NEK2-sensitive exons as markers to identify the TNBC subtype and to assess their prognostic value. RESULTS: Transcriptome analysis revealed a widespread impact of NEK2 on the transcriptome of TNBC cells, with 1830 AS events that are susceptible to its expression. NEK2 regulates the inclusion of cassette exons in splice variants that discriminate TNBC from other BC and that correlate with poor prognosis, suggesting that this kinase contributes to the TNBC-specific splicing program. NEK2 elicits its effects by modulating the expression of the splicing factor RBFOX2, a well-known regulator of epithelial to mesenchymal transition (EMT). Accordingly, NEK2 splicing-regulated genes are enriched in functional terms related to cell adhesion and contractile cytoskeleton and NEK2 depletion in mesenchymal TNBC cells induces phenotypic and molecular traits typical of epithelial cells. Remarkably, depletion of select NEK2-sensitive splice-variants that are prognostic in TNBC patients is sufficient to interfere with TNBC cell morphology and motility, suggesting that NEK2 orchestrates a pro-mesenchymal splicing program that modulates migratory and invasive properties of TNBC cells. CONCLUSIONS: Our study uncovers an extensive splicing program modulated by NEK2 involving splice variants that confer an invasive phenotype to TNBCs and that might represent, together with NEK2 itself, valuable therapeutic targets for this disease.


Assuntos
Quinases Relacionadas a NIMA/metabolismo , Fatores de Processamento de RNA/metabolismo , Proteínas Repressoras/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Linhagem Celular Tumoral , Proliferação de Células , Transição Epitelial-Mesenquimal , Humanos , Prognóstico , Transfecção
11.
FEBS J ; 288(21): 6250-6272, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34092037

RESUMO

Alternative splicing and polyadenylation represent two major steps in pre-mRNA-processing, which ensure proper gene expression and diversification of human transcriptomes. Deregulation of these processes contributes to oncogenic programmes involved in the onset, progression and evolution of human cancers, which often result in the acquisition of resistance to existing therapies. On the other hand, cancer cells frequently increase their transcriptional rate and develop a transcriptional addiction, which imposes a high stress on the pre-mRNA-processing machinery and establishes a therapeutically exploitable vulnerability. A prominent role in fine-tuning pre-mRNA-processing mechanisms is played by three main families of protein kinases: serine arginine protein kinase (SRPK), CDC-like kinase (CLK) and cyclin-dependent kinase (CDK). These kinases phosphorylate the RNA polymerase, splicing factors and regulatory proteins involved in cleavage and polyadenylation of the nascent transcripts. The activity of SRPKs, CLKs and CDKs can be altered in cancer cells, and their inhibition was shown to exert anticancer effects. In this review, we describe key findings that have been reported on these topics and discuss challenges and opportunities of developing therapeutic approaches targeting splicing factor kinases.


Assuntos
Proteínas Quinases/metabolismo , Processamento Alternativo/efeitos dos fármacos , Processamento Alternativo/genética , Humanos , Fosforilação , Inibidores de Proteínas Quinases/farmacologia
12.
iScience ; 24(5): 102492, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34036250

RESUMO

T helper (Th) 17 cells protect from infections and are pathogenic in autoimmunity. While human Th17 cell differentiation has been defined, the global and stepwise transcriptional changes accompanying this process remain uncharacterized. Herein, by performing transcriptome analysis of human Th17 cells, we uncovered three time-regulated modules: early, involving exclusively "signaling pathways" genes; late, characterized by response to infections; and persistent, involving effector immune functions. To assign them an inflammatory or regulatory potential, we compared Th17 cells differentiated in presence or absence of interleukin (IL)-1ß, respectively. Most inflammatory genes belong to the persistent module, whereas regulatory genes are lately or persistently induced. Among inflammatory genes, we identified the effector molecules IL17A, IL17F, IL26, IL6, interferon (IFN)G, IFNK, LTA, IL1A, platelet-derived growth factor (PDGF) A and the transcriptional regulators homeodomain-only protein homeobox (HOPX) and sex-determining-region-Y-box (SOX)2, whose expression was independently validated. This study provides an integrative representation of the stepwise human Th17 differentiation program and offers new perspectives toward therapeutic targeting of Th17-related autoimmune diseases.

13.
Cell Cycle ; 20(5-6): 480-489, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33632061

RESUMO

Expansion of the coding and regulatory capabilities of eukaryotic transcriptomes by alternative splicing represents one of the evolutionary forces underlying the increased structural complexity of metazoans. Brain and testes stand out as the organs that mostly exploit the potential of alternative splicing, thereby expressing the largest repertoire of splice variants. Herein, we will review organ-specific as well as common mechanisms underlying the high transcriptome complexity of these organs and discuss the impact exerted by this widespread alternative splicing regulation on the functionality and differentiation of brain and testicular cells.


Assuntos
Encéfalo/fisiologia , Diferenciação Celular/fisiologia , Splicing de RNA/fisiologia , Testículo/fisiologia , Animais , Encéfalo/citologia , Humanos , Masculino , Espermatogênese/fisiologia , Testículo/citologia , Transcriptoma/fisiologia
14.
Mol Oncol ; 15(2): 579-595, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33159833

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer. Most patients present with advanced disease at diagnosis, which only permits palliative chemotherapeutic treatments. RNA dysregulation is a hallmark of most human cancers, including PDAC. To test the impact of RNA processing dysregulation on PDAC pathology, we performed a bioinformatics analysis to identify RNA-binding proteins (RBPs) associated with prognosis. Among the 12 RBPs associated with progression-free survival, we focused on MEX3A because it was recently shown to mark an intestinal stem cell population that is refractory to chemotherapeutic treatments, a typical feature of PDAC. Increased expression of MEX3A was correlated with higher disease stage in PDAC patients and with tumor development in a mouse model of PDAC. Depletion of MEX3A in PDAC cells enhanced sensitivity to chemotherapeutic treatment with gemcitabine, whereas its expression was increased in PDAC cells selected upon chronic exposure to the drug. RNA-sequencing analyses highlighted hundreds of genes whose expression is sensitive to MEX3A expression, with significant enrichment in cell cycle genes. MEX3A binds to its target mRNAs, like cyclin-dependent kinase 6 (CDK6), and promotes their stability. Accordingly, knockdown of MEX3A caused a significant reduction in PDAC cell proliferation and in progression to the S phase of the cell cycle. These findings uncover a novel role for MEX3A in the acquisition and maintenance of chemoresistance by PDAC cells, suggesting that it may represent a novel therapeutic target for PDAC.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Desoxicitidina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentais/metabolismo , Neoplasias Pancreáticas/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Linhagem Celular Tumoral , Desoxicitidina/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/genética , Neoplasias Experimentais/diagnóstico , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/genética , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Fosfoproteínas/genética , Prognóstico , Proteínas de Ligação a RNA/genética , Gencitabina
15.
Cell Rep ; 31(9): 107703, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32492419

RESUMO

Tight coordination of gene expression in the developing cerebellum is crucial for establishment of neuronal circuits governing motor and cognitive function. However, transcriptional changes alone do not explain all of the switches underlying neuronal differentiation. Here we unveiled a widespread and highly dynamic splicing program that affects synaptic genes in cerebellar neurons. The motifs enriched in modulated exons implicated the splicing factor Sam68 as a regulator of this program. Sam68 controls splicing of exons with weak branchpoints by directly binding near the 3' splice site and competing with U2AF recruitment. Ablation of Sam68 disrupts splicing regulation of synaptic genes associated with neurodevelopmental diseases and impairs synaptic connections and firing of Purkinje cells, resulting in motor coordination defects, ataxia, and abnormal social behavior. These findings uncover an unexpectedly dynamic splicing regulatory network that shapes the synapse in early life and establishes motor and cognitive circuitry in the developing cerebellum.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cerebelo/metabolismo , Splicing de RNA , Proteínas de Ligação a RNA/metabolismo , Sinapses/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Comportamento Animal , Cerebelo/citologia , Cerebelo/crescimento & desenvolvimento , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ligação Proteica , Células de Purkinje/metabolismo , Sítios de Splice de RNA , Proteínas de Ligação a RNA/genética , Fator de Processamento U2AF/metabolismo
16.
Cell Death Dis ; 11(4): 240, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32303676

RESUMO

Homologous recombination and chromosome segregation in meiosis rely on the timely expression of two splice variants of the endonuclease SPO11, named α and ß, which respectively skip or include exon 2. However, in spite of its physiological importance, the mechanism underlying Spo11 alternative splicing in meiosis is still unknown. By screening the activity of factors that are predicted to bind the alternatively spliced region of Spo11, we identified hnRNPH as a key regulator of SPO11α splicing in mouse spermatocytes. Although hnRNPH was not upregulated in meiosis concomitantly with the switch in splicing, its recruitment to Spo11 pre-mRNA was favored by selective modulation of RNA polymerase II (RNAPII) phosphorylation and processivity in proximity of exon 2. The hnRNPH binding sites were localized near those of splicing factors that promote SPO11ß splicing, suggesting that hnRNPH favors exon 2 skipping by competing out positive regulators. Indeed, hnRNPH binds proximal to a consensus motif for Sam68, a positive regulator of SPO11ß splicing in vitro and in vivo, and it interferes with Sam68 binding to the Spo11 pre-mRNA. Thus, our work reveals that modulation of RNAPII dynamics in concert with hnRNPH recruitment exerts a combinatorial control of the timely regulated Spo11 splicing during meiosis.


Assuntos
Processamento Alternativo/genética , Endodesoxirribonucleases/metabolismo , Meiose/genética , RNA Polimerase II/genética , Espermatócitos/metabolismo , Espermatogênese/genética , Animais , Humanos , Masculino , Camundongos , RNA Polimerase II/metabolismo , Fatores de Processamento de RNA
17.
Cell Rep ; 26(11): 2929-2941.e5, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30865884

RESUMO

Male germ cells express the widest repertoire of transcript variants in mammalian tissues. Nevertheless, factors and mechanisms underlying such pronounced diversity are largely unknown. The splicing regulator Sam68 is highly expressed in meiotic cells, and its ablation results in defective spermatogenesis. Herein, we uncover an extensive splicing program operated by Sam68 across meiosis, primarily characterized by alternative last exon (ALE) regulation in genes of functional relevance for spermatogenesis. Lack of Sam68 preferentially causes premature transcript termination at internal polyadenylation sites, a feature observed also upon depletion of the spliceosomal U1snRNP in somatic cells. Notably, Sam68-regulated ALEs are characterized by proximity between U1snRNP and Sam68 binding motifs. We demonstrate a physical association between Sam68 and U1snRNP and show that U1snRNP recruitment to Sam68-regulated ALEs is impaired in Sam68-/- germ cells. Thus, our study reveals an unexpected cooperation between Sam68 and U1snRNP that insures proper processing of transcripts essential for male fertility.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Splicing de RNA , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Espermatogênese , Espermatogônias/metabolismo , Terminação da Transcrição Genética , Regiões 3' não Traduzidas , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Proteínas de Ligação a RNA/genética , Ribonucleoproteínas Nucleares Pequenas/genética , Espermatogônias/citologia
19.
Dev Cell ; 41(1): 82-93.e4, 2017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-28366282

RESUMO

Global transcriptome reprogramming during spermatogenesis ensures timely expression of factors in each phase of male germ cell differentiation. Spermatocytes and spermatids require particularly extensive reprogramming of gene expression to switch from mitosis to meiosis and to support gamete morphogenesis. Here, we uncovered an extensive alternative splicing program during this transmeiotic differentiation. Notably, intron retention was largely the most enriched pattern, with spermatocytes showing generally higher levels of retention compared with spermatids. Retained introns are characterized by weak splice sites and are enriched in genes with strong relevance for gamete function. Meiotic intron-retaining transcripts (IRTs) were exclusively localized in the nucleus. However, differently from other developmentally regulated IRTs, they are stable RNAs, showing longer half-life than properly spliced transcripts. Strikingly, fate-mapping experiments revealed that IRTs are recruited onto polyribosomes days after synthesis. These studies reveal an unexpected function for regulated intron retention in modulation of the timely expression of select transcripts during spermatogenesis.


Assuntos
Diferenciação Celular/genética , Íntrons/genética , Meiose/genética , Espermatozoides/citologia , Espermatozoides/metabolismo , Processamento Alternativo/genética , Animais , Núcleo Celular/genética , Ontologia Genética , Masculino , Camundongos Endogâmicos C57BL , Estabilidade de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Espermatogênese/genética , Transcrição Gênica , Transcriptoma/genética
20.
Mol Cancer ; 16(1): 8, 2017 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-28137272

RESUMO

Epithelial-to-mesenchymal transition (EMT) is associated with metastasis formation as well as with generation and maintenance of cancer stem cells. In this way, EMT contributes to tumor invasion, heterogeneity and chemoresistance. Morphological and functional changes involved in these processes require robust reprogramming of gene expression, which is only partially accomplished at the transcriptional level. Alternative splicing is another essential layer of gene expression regulation that expands the cell proteome. This step in post-transcriptional regulation of gene expression tightly controls cell identity between epithelial and mesenchymal states and during stem cell differentiation. Importantly, dysregulation of splicing factor function and cancer-specific splicing isoform expression frequently occurs in human tumors, suggesting the importance of alternative splicing regulation for cancer biology.In this review, we briefly discuss the role of EMT programs in development, stem cell differentiation and cancer progression. Next, we focus on selected examples of key factors involved in EMT and stem cell differentiation that are regulated post-transcriptionally through alternative splicing mechanisms. Lastly, we describe relevant oncogenic splice-variants that directly orchestrate cancer stem cell biology and tumor EMT, which may be envisioned as novel targets for therapeutic intervention.


Assuntos
Biomarcadores Tumorais/genética , Carcinogênese/patologia , Células-Tronco Neoplásicas/patologia , Processamento Alternativo , Carcinogênese/genética , Progressão da Doença , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...