Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Nanomedicine ; 19: 5021-5044, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38832335

RESUMO

Nanoparticle systems integrating alginate and chitosan emerge as a promising avenue to tackle challenges in leveraging the potency of pharmacological active agents. Owing to their intrinsic properties as polysaccharides, alginate and chitosan, exhibit remarkable biocompatibility, rendering them conducive to bodily integration. By downsizing drug particles to the nano-scale, the system enhances drug solubility in aqueous environments by augmenting surface area. Additionally, the system orchestrates extended drug release kinetics, aligning well with the exigencies of chronic drug release requisite for antibacterial therapeutics. A thorough scrutiny of existing literature underscores a wealth of evidence supporting the utilization of the alginate-chitosan nanoparticle system for antibacterial agent delivery. Literature reviews present abundant evidence of the utilization of nanoparticle systems based on a combination of alginate and chitosan for antibacterial agent delivery. Various experiments demonstrate enhanced antibacterial efficacy, including an increase in the inhibitory zone diameter, improvement in the minimum inhibitory concentration, and an enhancement in the bacterial reduction rate. This enhancement in efficacy occurs due to mechanisms involving increased solubility resulting from particle size reduction, prolonged release effects, and enhanced selectivity towards bacterial cell walls, stemming from ionic interactions between positively charged particles and teichoic acid on bacterial cell walls. However, clinical studies remain limited, and there are currently no marketed antibacterial drugs utilizing this system. Hence, expediting clinical efficacy validation is crucial to maximize its benefits promptly.


Assuntos
Alginatos , Antibacterianos , Quitosana , Nanopartículas , Quitosana/química , Quitosana/farmacologia , Alginatos/química , Alginatos/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/administração & dosagem , Antibacterianos/farmacocinética , Humanos , Nanopartículas/química , Tamanho da Partícula , Liberação Controlada de Fármacos , Portadores de Fármacos/química , Testes de Sensibilidade Microbiana , Animais , Sistemas de Liberação de Medicamentos/métodos , Solubilidade , Bactérias/efeitos dos fármacos
2.
J Adv Pharm Technol Res ; 14(2): 113-118, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37255875

RESUMO

Eleutherine bulbosa bulbs, an endemic plant in Indonesia, have enormous potential as raw materials for pharmaceutical products. Therefore, it is necessary to strengthen and develop extraction methods that are easy, rapid, and efficient to enrich targeted secondary metabolites. This study aims to optimize the microwave-assisted extraction (MAE) method conditions for polyphenol metabolite from E. bulbosa bulbs. The MAE method (with different conditions) was applied to extract total polyphenol content (TPC) from E. bulbosa bulbs. TPC values were determined using a 96-well microplate reader spectrophotometry method and Folin-Ciocalteu reagent. The variables of MAE, as an experimental design-independent variable, were involved. The MAE method condition was optimized using response surface methodology (RSM) and Box-Behnken design based on the TPC value. The MAE condition was optimized with 60% ethanol, sample-solvent ratio of 1:10 g/mL, and 50% Watts of microwave power for 10 min. The quadratic regression analysis was achieved to predict the TPC value using the equation: TPC value = 28.63-5.545A +2.211B -0.741C +1.995D - 4.045AB +0.856AC -7.541BC +1.961CD -8.342A2-0.071B2 +1.840C2-1.535D2. For the scale-up confirmation test, a 50-g sample was used to prove the validity of the equation to predict the TPC value, yielding 35.33 ± 2.13 mg gallic acid equivalent/g samples. The optimum of the MAE condition recommended based on the results of RSM analysis can be applied directly to the enrichment of polyphenols metabolite constituent of E. bulbosa easily, cheaply, quickly, and efficiently.

3.
Pharmaceutics ; 15(3)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36986608

RESUMO

Amniotic membrane (AM) is an avascular structure composed of three different layers, which contain collagen, extracellular matrix, and biologically active cells (stem cells). Collagen, a naturally occurring matrix polymer, provides the structural matrix/strength of the amniotic membrane. Tissue remodeling is regulated by growth factors, cytokines, chemokines, and other regulatory molecules produced by endogenous cells within AM. Therefore, AM is considered an attractive skin-regenerating agent. This review discusses the application of AM in skin regeneration, including its preparation for application to the skin and its mechanisms of therapeutic healing in the skin. This review involved collecting research articles that have been published in several databases, including Google Scholar, PubMed, Science Direct, and Scopus. The search was conducted by using the keywords 'amniotic membrane skin', 'amniotic membrane wound healing', 'amniotic membrane burn', 'amniotic membrane urethral defects', 'amniotic membrane junctional epidermolysis bullosa', and 'amniotic membrane calciphylaxis'. Ultimately, 87 articles are discussed in this review. Overall, AM has various activities that help in the regeneration and repair of damaged skin.

4.
Life (Basel) ; 12(2)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35207481

RESUMO

Mitragyna is a genus belonging to the Rubiaceae family and is a plant endemic to Asia and Africa. Traditionally, the plants of this genus were used by local people to treat some diseases from generation to generation. Mitragyna speciosa (Korth.) Havil. is a controversial plant from this genus, known under the trading name "kratom", and contains more than 40 different types of alkaloids. Mitragynine and 7-hydroxymitragynine have agonist morphine-like effects on opioid receptors. Globally, Mitragyna plants have high economic value. However, regulations regarding the circulation and use of these commodities vary in several countries around the world. This review article aims to comprehensively examine Mitragyna plants (mainly M. speciosa) as potential pharmacological agents by looking at various aspects of the plants. A literature search was performed and information collected using electronic databases including Scopus, ScienceDirect, PubMed, directory open access journal (DOAJ), and Google Scholar in early 2020 to mid-2021. This narrative review highlights some aspects of this genus, including historical background and botanical origins, habitat, cultivation, its use in traditional medicine, phytochemistry, pharmacology and toxicity, abuse and addiction, legal issues, and the potential of Mitragyna species as pharmaceutical products.

5.
Molecules ; 26(2)2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33440705

RESUMO

Piper betle var. nigra is a tropical plant closely related to the common piper. P. betle has also been dubbed a promising source of natural antioxidants in herbal health products, antibacterial, antifungal, antimalarial, cytotoxic activity against the cancer cell lines K562 and HL-60, and antileishmanial. The aim of this study to observation Antimicrobial activity and isolation of chemical compound. The antimicrobial activity of P. betle extract was performed by well diffusion method against two oral pathogenic bacteria (Streptococcus mutans and Streptococcus sanguinis) and opportunistic pathogenic yeast (Candida albicans). The inoculum (bacterial and yeast suspension) was prepared from a 24-h culture on NB for bacterial suspension and on TSB for yeast suspension. Extraction and isolation using various method of chromatography. Isolated compounds were characterized by spectroscopic means. Our study showed antimicrobial activity from crude ethanol extract of leaves P. betle L. var. nigra against two oral pathogenic bacteria and opportunistic pathogenic yeast with concentration 0.5% and 1%. The first report of two new amides derivatives, piperenamide A (1) and piperenamide B (2) in P. betle L. var. nigra.


Assuntos
Amidas/análise , Anti-Infecciosos/análise , Piper betle/química , Folhas de Planta/química , Amidas/farmacologia , Anti-Infecciosos/farmacologia , Candida albicans/efeitos dos fármacos , Candidíase/tratamento farmacológico , Humanos , Indonésia , Extratos Vegetais/análise , Extratos Vegetais/farmacologia , Infecções Estreptocócicas/tratamento farmacológico , Streptococcus mutans/efeitos dos fármacos , Streptococcus sanguis/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...