Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Insects ; 13(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35055900

RESUMO

The western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, is considered one of the most economically important pests of maize (Zea mays L.) in the United States (U.S.) Corn Belt with costs of management and yield losses exceeding USD ~1-2 billion annually. WCR management has proven challenging given the ability of this insect to evolve resistance to multiple management strategies including synthetic insecticides, cultural practices, and plant-incorporated protectants, generating a constant need to develop new management tools. One of the most recent developments is maize expressing double-stranded hairpin RNA structures targeting housekeeping genes, which triggers an RNA interference (RNAi) response and eventually leads to insect death. Following the first description of in planta RNAi in 2007, traits targeting multiple genes have been explored. In June 2017, the U.S. Environmental Protection Agency approved the first in planta RNAi product against insects for commercial use. This product expresses a dsRNA targeting the WCR snf7 gene in combination with Bt proteins (Cry3Bb1 and Cry34Ab1/Cry35Ab1) to improve trait durability and will be introduced for commercial use in 2022.

3.
Front Plant Sci ; 12: 728652, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34887882

RESUMO

Colorado potato beetle (CPB, Leptinotarsa decemlineata) is a major pest of potato and other solanaceous vegetables in the Northern Hemisphere. The insect feeds on leaves and can completely defoliate crops. Because of the repeated use of single insecticide classes without rotating active ingredients, many chemicals are no longer effective in controlling CPB. Ledprona is a sprayable double-stranded RNA biopesticide with a new mode of action that triggers the RNA interference pathway. Laboratory assays with second instar larvae fed Ledprona showed a dose-response where 25×10-6g/L of dsPSMB5 caused 90% mortality after 6days of initial exposure. We also showed that exposure to Ledprona for 6h caused larval mortality and decreased target messenger RNA (mRNA) expression. Decrease in PSMB5 protein levels was observed after 48h of larval exposure to Ledprona. Both PSMB5 mRNA and protein levels did not recover over time. Ledprona efficacy was demonstrated in a whole plant greenhouse trial and performed similarly to spinosad. Ledprona, currently pending registration at EPA, represents a new biopesticide class integrated pest management and insecticide resistance management programs directed against CPB.

4.
Genomics Proteomics Bioinformatics ; 19(5): 800-814, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33607298

RESUMO

Diabrotica virgifera virgifera (western corn rootworm, WCR) is one of the most destructive agricultural insect pests in North America. It is highly adaptive to environmental stimuli and crop protection technologies. However, little is known about the underlying genetic basis of WCR behavior and adaptation. More specifically, the involvement of small RNAs (sRNAs), especially microRNAs (miRNAs), a class of endogenous small non-coding RNAs that regulate various biological processes, has not been examined, and the datasets of putative sRNA sequences have not previously been generated for WCR. To achieve a comprehensive collection of sRNA transcriptomes in WCR, we constructed, sequenced, and analyzed sRNA libraries from different life stages of WCR and northern corn rootworm (NCR), and identified 101 conserved precursor miRNAs (pre-miRNAs) in WCR and other Arthropoda. We also identified 277 corn rootworm specific pre-miRNAs. Systematic analyses of sRNA populations in WCR revealed that its sRNA transcriptome, which includes PIWI-interacting RNAs (piRNAs) and miRNAs, undergoes a dynamic change throughout insect development. Phylogenetic analysis of miRNA datasets from model species reveals that a large pool of species-specific miRNAs exists in corn rootworm; these are potentially evolutionarily transient. Comparisons of WCR miRNA clusters to other insect species highlight conserved miRNA-regulated processes that are common to insects. Parallel Analysis of RNA Ends (PARE) also uncovered potential miRNA-guided cleavage sites in WCR. Overall, this study provides a new resource for studying the sRNA transcriptome and miRNA-mediated gene regulation in WCR and other Coleopteran insects.


Assuntos
Besouros , MicroRNAs , Animais , Besouros/genética , MicroRNAs/genética , Filogenia , Transcriptoma , Zea mays/genética
5.
Plant Biotechnol J ; 18(9): 1925-1932, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32012433

RESUMO

The cotton bollworm, Helicoverpa armigera, is a major insect pest for a wide range of agricultural crops. It causes significant yield loss through feeding damage and by increasing the crop's vulnerability to bacterial and fungal infections. Although expression of Bacillus thuringiensis (Bt) toxins in transgenic crops has been very successful in protecting against insect pests, including H. armigera, field-evolved resistance has occurred in multiple species. To manage resistant populations, new protection strategies must be continuously developed. Trans-kingdom RNA interference (TK-RNAi) is a promising method for controlling herbivorous pests. TK-RNAi is based on delivering dsRNA or hairpin RNA containing essential insect gene sequences to the feeding insect. The ingested molecules are processed by the insect's RNAi machinery and guide it to silence the target genes. Recently, TK-RNAi delivery has been enhanced by expressing the ds- or hpRNAs in the chloroplast. This compartmentalizes the duplexed RNA away from the plant's RNAi machinery, ensuring that it is delivered in an unprocessed form to the insect. Here, we report another alternative approach for delivering precursor anti-insect RNA in plants. Insect pre-microRNA (pre-miR) transcripts were modified to contain artificial microRNAs (amiRs), targeting insect genes, and expressed in transgenic Nicotiana benthamiana plants. These modified pre-miRs remained largely unprocessed in the plants, and H. armigera feeding on leaves from these plants had increased mortality, developmental abnormalities and delayed growth rates. This shows that plant-expressed insect pre-amiRs (plin-amiRs) are a new strategy of protecting plants against herbivorous insects.


Assuntos
Bacillus thuringiensis , MicroRNAs , Mariposas , Animais , Insetos , MicroRNAs/genética , Mariposas/genética , Plantas Geneticamente Modificadas/genética , Interferência de RNA
6.
Pest Manag Sci ; 76(4): 1500-1512, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31677217

RESUMO

BACKGROUND: RNA interference (RNAi) triggered by maize plants expressing RNA hairpins against specific western corn rootworm (WCR) transcripts have proven to be effective at controlling this pest. To provide robust crop protection, mRNA transcripts targeted by double-stranded RNA must be sensitive to knockdown and encode essential proteins. RESULTS: Using WCR adult feeding assays, we identified Sec23 as a highly lethal RNAi target. Sec23 encodes a coatomer protein, a component of the coat protein (COPII) complex that mediates ER-Golgi transport. The lethality detected in WCR adults was also observed in early instar larvae, the life stage causing most of the crop damage, suggesting that WCR adults can serve as an alternative to larvae for dsRNA screening. Surprisingly, over 85% transcript inhibition resulted in less than 40% protein knockdown, suggesting that complete protein knockdown is not necessary for Sec23 RNAi-mediated mortality. The efficacy of Sec23 dsRNA for rootworm control was confirmed in planta; T0 maize events carrying rootworm Sec23 hairpin transgenes showed high levels of root protection in greenhouse assays. A reduction in larval survival and weight were observed in the offspring of WCR females exposed to Sec23 dsRNA LC25 in diet bioassays. CONCLUSION: We describe Sec23 as RNAi target for in planta rootworm control. High mortality in exposed adult and larvae and moderate sublethal effects in the offspring of females exposed to Sec23 dsRNA LC25 , suggest the potential for field application of this RNAi trait and the need to factor in responses to sublethal exposure into insect resistance management programs. © 2019 Society of Chemical Industry.


Assuntos
Zea mays , Animais , Besouros , Feminino , Larva , Controle Biológico de Vetores , Plantas Geneticamente Modificadas , Interferência de RNA , RNA de Cadeia Dupla
7.
Toxins (Basel) ; 11(6)2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31163681

RESUMO

Vegetative insecticidal proteins (Vips) from Bacillus thuringiensis (Bt) are unique from crystal (Cry) proteins found in Bt parasporal inclusions as they are secreted during the bacterial vegetative growth phase and bind unique receptors to exert their insecticidal effects. We previously demonstrated that large modifications of the Vip3 C-terminus could redirect insecticidal spectrum but results in an unstable protein with no lethal activity. In the present work, we have generated a new Vip3 protein, Vip3Ab1-740, via modest modification of the Vip3Ab1 C-terminus. Vip3Ab1-740 is readily processed by midgut fluid enzymes and has lethal activity towards Spodoptera eridania, which is not observed with the Vip3Ab1 parent protein. Importantly, Vip3Ab1-740 does retain the lethal activity of Vip3Ab1 against other important lepidopteran pests. Furthermore, transgenic plants expressing Vip3Ab1-740 are protected against S. eridania, Spodoptera frugiperda, Helicoverpa zea, and Pseudoplusia includens. Thus, these studies demonstrate successful engineering of Vip3 proteins at the C-terminus to broaden insecticidal spectrum, which can be employed for functional expression in planta.


Assuntos
Arabidopsis/parasitologia , Proteínas de Bactérias/genética , Controle Biológico de Vetores , Plantas Geneticamente Modificadas/parasitologia , Spodoptera/fisiologia , Animais , Arabidopsis/genética , Inseticidas
8.
Insect Biochem Mol Biol ; 104: 20-29, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30243801

RESUMO

Western corn rootworm, Diabrotica virgifera virgifera, is the major agronomically important pest of maize in the US Corn Belt. To augment the repertoire of the available dsRNA-based traits that control rootworm, we explored a potentially haplolethal gene target, wings up A (wupA), which encodes Troponin I. Troponin I, a component of the Troponin-Tropomyosin complex, is an inhibitory protein involved in muscle contraction. In situ hybridization showed that feeding on wupA-targeted dsRNAs caused systemic transcript knockdown in D. v. virgifera larvae. The knockdown of wupA transcript, and by extension Troponin I protein, led to deterioration of the striated banding pattern in larval body muscle and decreased muscle integrity. Additionally, the loss of function of the circular muscles surrounding the alimentary system led to significant accumulation of food material in the hind gut, which is consistent with a loss of peristaltic motion of the alimentary canal. In this study, we demonstrate that wupA dsRNA is lethal in D. v. virgifera larvae when fed via artificial diet, with growth inhibition of up to 50% within two days of application. Further, wupA hairpins can be stably expressed and detected in maize. Maize expressing wupA hairpins exhibit robust root protection in greenhouse bioassays, with several maize transgene integration events showing root protection equivalent to commercial insecticidal protein-expressing maize.


Assuntos
Besouros , Raízes de Plantas/parasitologia , Interferência de RNA , Troponina I , Zea mays/parasitologia , Animais , Besouros/genética , Besouros/metabolismo , Técnicas de Silenciamento de Genes , Proteínas de Insetos/antagonistas & inibidores , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Larva/genética , Larva/metabolismo , Troponina I/antagonistas & inibidores , Troponina I/genética , Troponina I/metabolismo
9.
Pestic Biochem Physiol ; 150: 66-70, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30195389

RESUMO

RNA interference (RNAi) has proven effective for controlling pest insects such as western corn rootworm (WCR), Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae). Previous studies have shown that WCR adults display a robust RNAi response to orally-administered double-stranded RNA (dsRNA). However, it is unclear how quickly the response occurs after ingestion or how long RNAi effect lasts after WCR stop ingesting diet containing dsRNA. In the current study, WCR adult females were provided with diet treated with dsRNAs of Laccase 2 and Argonaute 2, two nonessential genes, for 8 days. RNAi response in WCR females commenced as early as 10 h after exposure to dsRNA and lasted up to 40 days after exposure to dsRNA ended. Our results show that dsRNA-mediated RNAi response in WCR females is rapid and long-lasting. These findings suggest that even a short-term ingestion of transgenic plants expressing dsRNA by WCR may have a sustained impact on this insect.


Assuntos
Besouros/genética , Interferência de RNA , RNA de Cadeia Dupla/administração & dosagem , Animais , Proteínas Argonautas/genética , Feminino , Técnicas de Silenciamento de Genes , Inativação Gênica , Proteínas de Insetos/metabolismo , Lacase/genética , Controle Biológico de Vetores , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
PLoS One ; 13(8): e0201849, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30092086

RESUMO

The cellular uptake of dsRNA after dietary exposure is critical for RNAi efficiency; however, the mechanism of its uptake in many insects remains to be understood. In this study, we evaluated the roles of the endocytic pathway genes Clathrin heavy chain (Chc), Clathrin adaptor protein AP50, ADP ribosylation factor-like 1 (Arf72A), Vacuolar H+ ATPase 16 kDa subunit (Vha16), and small GTPase Rab7 and putative sid-1-like genes (silA and silC) in RNAi response in western corn rootworm (WCR) using a two-stage dsRNA exposure bioassay. Silencing of Chc, Vha16, and AP50 led to a significant decrease in the effects of laccase2 dsRNA reporter, indicating that these genes are involved in RNAi response. However, the knockdown of either Arf72A or Rab7 did not suppress the response to laccase2 dsRNA. The silencing of the silC gene did not lead to a significant reduction in mortality or increase in the expression of V-ATPase A reporter. While the silencing of the silA gene significantly decreased insect mortality, significant changes in V-ATPase A expression were not detected. These results suggest that clathrin-dependent endocytosis is a biological mechanism that plays an important role during RNAi response in WCR adults. The fact that no definitive support for the roles of silA or silC in RNAi response was obtained support the idea that RNAi response varies greatly in different insect species, demanding additional studies focused on elucidating their involvement in this mechanism.


Assuntos
Clatrina/metabolismo , Besouros/metabolismo , Endocitose/fisiologia , Proteínas de Insetos/metabolismo , Interferência de RNA/fisiologia , Animais , Besouros/genética , Endocitose/genética , Técnicas de Silenciamento de Genes , Proteínas de Insetos/genética , Controle Biológico de Vetores , RNA de Cadeia Dupla/metabolismo , Transcriptoma , Zea mays
11.
Pestic Biochem Physiol ; 148: 103-110, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29891360

RESUMO

The use of transgenic crops that induce silencing of essential genes using double-stranded RNA (dsRNA) through RNA interference (RNAi) in western corn rootworm, Diabrotica virgifera virgifera, is likely to be an important component of new technologies for the control of this important corn pest. Previous studies have demonstrated that the dsRNA response in D. v. virgifera depends on the presence of RNAi pathway genes including Dicer-2 and Argonaute 2, and that downregulation of these genes limits the lethality of environmental dsRNA. A potential resistance mechanism to lethal dsRNA may involve loss of function of RNAi pathway genes. Howver, the potential for resistance to evolve may depend on whether these pathway genes have essential functions such that the loss of function of core proteins in the RNAi pathway will have fitness costs in D. v. virgifera. Fitness costs associated with potential resistance mechanisms have a central role in determining how resistance can evolve to RNAi technologies in western corn rootworm. We evaluated the effect of dsRNA and microRNA pathway gene knockdown on the development of D. v. virgifera larvae through short-term and long-term exposures to dsRNA for Dicer and Argonaute genes. Downregulation of Argonaute 2, Dicer-2, Dicer-1 did not significantly affect larval survivorship or development through short and long-term exposure to dsRNA. However, downregulation of Argonaute 1 reduced larval survivorship and delayed development. The implications of these results as they relate to D. v. virgifera resistance to lethal dsRNA are discussed.


Assuntos
Proteínas Argonautas/genética , Besouros/genética , Técnicas de Silenciamento de Genes , Genes de Insetos , RNA Helicases/genética , Interferência de RNA , RNA de Cadeia Dupla/genética , Ribonuclease III/genética , Animais , Besouros/crescimento & desenvolvimento , Besouros/fisiologia , Produtos Agrícolas/genética , Produtos Agrícolas/parasitologia , Regulação para Baixo , Larva/genética , Larva/crescimento & desenvolvimento , MicroRNAs/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/parasitologia
12.
Sci Rep ; 8(1): 2061, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29391456

RESUMO

RNAi shows potential as an agricultural technology for insect control, yet, a relatively low number of robust lethal RNAi targets have been demonstrated to control insects of agricultural interest. In the current study, a selection of lethal RNAi target genes from the iBeetle (Tribolium castaneum) screen were used to demonstrate efficacy of orthologous targets in the economically important coleopteran pests Diabrotica virgifera virgifera and Meligethes aeneus. Transcript orthologs of 50 selected genes were analyzed in D. v. virgifera diet-based RNAi bioassays; 21 of these RNAi targets showed mortality and 36 showed growth inhibition. Low dose injection- and diet-based dsRNA assays in T. castaneum and D. v. virgifera, respectively, enabled the identification of the four highly potent RNAi target genes: Rop, dre4, ncm, and RpII140. Maize was genetically engineered to express dsRNA directed against these prioritized candidate target genes. T0 plants expressing Rop, dre4, or RpII140 RNA hairpins showed protection from D. v. virgifera larval feeding damage. dsRNA targeting Rop, dre4, ncm, and RpII140 in M. aeneus also caused high levels of mortality both by injection and feeding. In summary, high throughput systems for model organisms can be successfully used to identify potent RNA targets for difficult-to-work with agricultural insect pests.


Assuntos
Inativação Gênica , Engenharia Genética/métodos , MicroRNAs/genética , Controle Biológico de Vetores/métodos , Transgenes , Tribolium/genética , Animais , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Tribolium/patogenicidade , Zea mays/genética , Zea mays/parasitologia
13.
Pest Manag Sci ; 74(8): 1751-1758, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29377554

RESUMO

RNA interference (RNAi) was discovered almost 20 years ago and has been exploited worldwide to silence genes in plants and animals. A decade later, it was found that transforming plants with an RNAi construct targeting an insect gene could protect the plant against feeding by that insect. Production of double-stranded RNA (dsRNA) in a plant to affect the viability of a herbivorous animal is termed trans-kingdom RNAi (TK-RNAi). Since this pioneering work, there have been many further examples of successful TK-RNAi, but also reports of failed attempts and unrepeatable experiments. Recently, three laboratories have shown that producing dsRNA in a plant's chloroplast, rather than in its cellular cytoplasm, is a very effective way of delivering TK-RNAi. Our review examines this potentially game-changing approach and compares it with other transgenic insect-proofing schemes. © 2018 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Cloroplastos/fisiologia , Genes de Insetos/genética , Controle de Insetos/métodos , Plantas Geneticamente Modificadas/fisiologia , Interferência de RNA , RNA de Cadeia Dupla/genética , Animais
14.
Insect Sci ; 25(1): 45-56, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27520841

RESUMO

Western corn rootworm (WCR, Diabrotica virgifera virgifera LeConte) is highly sensitive to orally delivered double-stranded RNA (dsRNA). RNAi in WCR is systemic and spreads throughout the insect body. This raises the question whether transitive RNAi is a mechanism that functions in WCR to amplify the RNAi response via production of secondary siRNA. Secondary siRNA production is achieved through RNA-dependent RNA polymerase (RdRP) activity in other eukaryotic organisms, but RdRP has not been identified in WCR and any other insects. This study visualized the spread of the RNAi-mediated knockdown of Dv v-ATPase C mRNA throughout the WCR gut and other tissues using high-sensitivity branched DNA in situ hybridization. Furthermore, we did not detect either secondary siRNA production or transitive RNAi in WCR through siRNA sequence profile analysis. Nucleotide mismatched sequences introduced into either the sense or antisense strand of v-ATPase C dsRNAs were maintained in siRNAs derived from WCR fed with the mismatched dsRNAs in a strand specific manner. The distribution of all siRNAs was restricted to within the original target sequence regions, which may indicate the lack of new dsRNA synthesis leading to production of secondary siRNA. Thus, the systemic spread of RNAi in WCR may be derived from the original dsRNA molecules taken up from the gut lumen. These results indicate that the initial dsRNA dose is important for a lethal systemic RNAi response in WCR and have implications in developing effective dsRNA traits to control WCR and in resistance management to prolong the durability of RNAi trait technology.


Assuntos
Besouros , Interferência de RNA , Animais , Larva
15.
PLoS One ; 12(12): e0190208, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29267401

RESUMO

RNA interference (RNAi) based approaches can potentially be used to control insect pests. These approaches may depend on the usage of microRNA (miRNA) or double stranded RNA (dsRNA) mediated gene knockdown, which likely involves proteins that regulate these pathways, such as Argonaute 1 (Ago1), Argonaute 2 (Ago2), Dicer 1 (Dcr1), Dicer 2 (Dcr2), and Drosha in insects. We previously performed functional characterization of Ago2 and Dcr2 of western corn rootworm (WCR), Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae) and observed that knockdown of Ago2 and Dcr2 ameliorated the lethal effect induced by the dsRNA-mediated knockdown of an essential gene in WCR, thereby confirming the involvement of Ago2 and Dcr2 in the dsRNA pathway. In the current study, we identified and characterized additional members of the Argonaute and Dicer gene families, namely Ago1, Ago3, Aubergine, and Dcr1, in a previously developed WCR transcriptome. We also identified a Drosha homolog in the same transcriptome. We evaluated the impacts on WCR adult fitness associated with the dsRNA-mediated knockdown of Ago1, Ago2, Dcr1, Dcr2, and Drosha genes. Among these putative RNAi pathway genes, only the knockdown of Ago1 incurred significant fitness costs such as reduced survival and oviposition rate, as well as decreased egg viability. The present study, to our knowledge, represents the first report showing that Ago1 is critical to the survival of insect adults. Our findings suggest that Ago1 plays an essential role in broader life stages of an insect than previously thought. Importantly, since fitness costs were not observed, downregulation or loss of function of RNAi pathway genes such as Ago2 or Dcr2 may confer resistance to pest control measures that rely on the normal functions of these genes. However, the precise roles of these genes under field conditions (i.e., in the presence of possible viral pathogens) requires further investigation.


Assuntos
Besouros/genética , Técnicas de Silenciamento de Genes , Interferência de RNA , Zea mays/parasitologia , Animais , Besouros/fisiologia , Interações Hospedeiro-Parasita , Filogenia
16.
Sci Rep ; 7(1): 11112, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28894249

RESUMO

In this work, we characterized 2 novel insecticidal proteins; Vip3Ab1 and Vip3Bc1. These proteins display unique insecticidal spectra and have differential rates of processing by lepidopteran digestive enzymes. Furthermore, we have found that both proteins exist as tetramers in their native state before and after proteolysis. In addition, we expressed truncated forms and protein chimeras to gain a deeper understanding of toxin specificity and stability. Our study confirms a role for the C-terminal 65 kDa domain in directing insect specificity. Importantly, these data also indicate a specific interaction between the 20 kDa amino terminus and 65 kDa carboxy terminus, after proteolytic processing. We demonstrate the C-terminal 65 kDa to be labile in native proteolytic conditions in absence of the 20 kDa N-terminus. Thus, the 20 kDa fragment functions to provide stability to the C-terminal domain, which is necessary for lethal toxicity against lepidopteran insects.


Assuntos
Proteínas de Bactérias/genética , Lepidópteros/genética , Proteínas Recombinantes , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Cromatografia em Gel , Lepidópteros/efeitos dos fármacos , Lepidópteros/metabolismo , Domínios Proteicos , Proteólise
17.
Toxins (Basel) ; 9(5)2017 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-28481307

RESUMO

Western corn rootworm (WCR, Diabrotica virgifera virgifera LeConte) is a major corn pest in the United States, causing annual losses of over $1 billion. One approach to protect against crop loss by this insect is the use of transgenic corn hybrids expressing one or more crystal (Cry) proteins derived from Bacillus thuringiensis. Cry34Ab1 and Cry35Ab1 together comprise a binary insecticidal toxin with specific activity against WCR. These proteins have been developed as insect resistance traits in commercialized corn hybrids resistant to WCR feeding damage. Cry34/35Ab1 is a pore forming toxin, but the specific effects of Cry34/35Ab1 on WCR cells and tissues have not been well characterized microscopically, and the overall histopathology is poorly understood. Using high-resolution resin-based histopathology methods, the effects of Cry34/35Ab1 as well as Cry3Aa1, Cry6Aa1, and the Photorhabdus toxin complex protein TcdA have been directly visualized and documented. Clear symptoms of intoxication were observed for all insecticidal proteins tested, including swelling and sloughing of enterocytes, constriction of midgut circular muscles, stem cell activation, and obstruction of the midgut lumen. These data demonstrate the effects of these insecticidal proteins on WCR midgut cells, and the collective response of the midgut to intoxication. Taken together, these results advance our understanding of the insect cell biology and pathology of these insecticidal proteins, which should further the field of insect resistance traits and corn rootworm management.


Assuntos
Bacillus thuringiensis , Proteínas de Bactérias/farmacologia , Endotoxinas/farmacologia , Proteínas Hemolisinas/farmacologia , Inseticidas/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Animais , Besouros , Larva , Controle Biológico de Vetores
18.
Appl Environ Microbiol ; 83(11)2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28363958

RESUMO

Anticarsia gemmatalis (velvetbean caterpillar) and Chrysodeixis includens (soybean looper, formerly named Pseudoplusia includens) are two important defoliating insects of soybeans. Both lepidopteran pests are controlled mainly with synthetic insecticides. Alternative control strategies, such as biopesticides based on the Bacillus thuringiensis (Bt) toxins or transgenic plants expressing Bt toxins, can be used and are increasingly being adopted. Studies on the insect susceptibilities and modes of action of the different Bt toxins are crucial to determine management strategies to control the pests and to delay outbreaks of insect resistance. In the present study, the susceptibilities of both soybean pests to the Bt toxins Cry1Ac, Cry1Fa, Cry1Ca, and Cry2Aa have been investigated. Bioassays performed in first-instar larvae showed that both insects are susceptible to all these toxins. Competition-binding studies carried out with Cry1Ac and Cry1Fa 125-iodine labeled proteins demonstrated the presence of specific binding sites for both of them on the midgut brush border membrane vesicles (BBMVs) of both A. gemmatalis and C. includens Competition-binding experiments and specific-binding inhibition studies performed with selected sugars and lectins indicated that Cry1Ac and Cry1Fa share some, but not all, binding sites in the midguts of both insects. Also, the Cry1Ac- or Cry1Fa-binding sites were not shared with Cry1Ca or Cry2Aa in either soybean pest. This study contributes to the knowledge of Bt toxicity and midgut toxin binding sites in A. gemmatalis and C. includens and sheds light on the cross-resistance potential of Cry1Ac, Cry1Fa, Cry1Ca, and Cry2Aa Bt proteins as candidate proteins for Bt-pyramided crops.IMPORTANCE In the present study, the toxicity and the mode of action of the Bacillus thuringiensis (Bt) toxins Cry1Ac, Cry1Fa, Cry1Ca, and Cry2Aa in Anticarsia gemmatalis and Chrysodeixis includens (important defoliating pests of soybeans) have been investigated. These studies are crucial for determining management strategies for pest control. Bioassays showed that both insects were susceptible to the toxins. Competition-binding studies demonstrated the presence of Cry1Fa- and Cry1Ac-specific binding sites in the midguts of both pests. These results, together with the results from binding inhibition studies performed with sugars and lectins, indicated that Cry1Ac and Cry1Fa share some, but not all, binding sites, and that they were not shared with Cry1Ca or Cry2Aa in either soybean pest. This study contributes to the knowledge of Bt toxicity in A. gemmatalis and C. includens and sheds light on the cross-resistance potential of Cry1Ac, Cry1Fa, Cry1Ca, and Cry2Aa Bt proteins as candidate proteins for Bt-pyramided crops.


Assuntos
Proteínas de Bactérias/toxicidade , Endotoxinas/toxicidade , Glycine max/parasitologia , Proteínas Hemolisinas/toxicidade , Mariposas/efeitos dos fármacos , Doenças das Plantas/parasitologia , Animais , Bacillus thuringiensis/química , Toxinas de Bacillus thuringiensis , Larva/efeitos dos fármacos , Larva/fisiologia , Mariposas/fisiologia , Controle Biológico de Vetores , Doenças das Plantas/prevenção & controle
20.
J Invertebr Pathol ; 142: 27-33, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27480405

RESUMO

Insecticidal proteins developed for in-plant protection against crop pests undergo extensive safety testing during the product development process. Safety considerations for insecticidal proteins expressed in crops follow recommended, science-based guidelines and specific studies are conducted on a case by case basis. Corn events expressing Bacillus thuringiensis (Bt) Cry34Ab1 and Cry35Ab1 were developed to protect maize from Diabrotica virgifera virgifera (western corn rootworm) feeding damage. The protein crystal structures of Cry34Ab1 and Cry35Ab1 are different from the more common three-domain Cry or Vip3 proteins expressed in insect resistant maize varieties. Cry34Ab1 is a single domain protein that folds into a beta sandwich structure that resembles membrane-active proteins, including several cytolysins, from a variety of natural sources. Cry35Ab1 has two domains, one domain with structural relatedness to sugar binding motifs and a second domain with an extended beta sheet structure that is clearly related to beta pore forming proteins, some of which are insecticidal, e.g. B. sphaericus BinA/BinB. In this review we discuss Cry34Ab1/Cry35Ab1 structure and function in the context of protein safety studies for insect resistant crops.


Assuntos
Proteínas de Bactérias , Endotoxinas , Proteínas Hemolisinas , Inseticidas , Controle Biológico de Vetores/métodos , Plantas Geneticamente Modificadas/genética , Toxinas de Bacillus thuringiensis , Conformação Proteica , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...