Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microsc Res Tech ; 87(2): 349-359, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37846045

RESUMO

The biological synthesis of nanoparticles is an emerging field of study that seeks to synthesize nanoparticles using non-chemical mechanisms such as microorganisms, plants, and animal blood serum. Among these, plants have gained particular attention due to their ease of handling, availability, and ability to synthesize a wide range of nanoparticles. Therefore, the current study aimed to fabricate the silver nanoparticles (AgNPs) using Chinese medicinal plants (CMP) for their possible toxicity in common carp fish (Cyprinus carpio). For this purpose, CMP was dried, ground, and used as a bio-reductive agent. The fabricated AgNPs were characterized and a well dispersed AgNPs were obtained. Moreover, the C. carpio was exposed to the AgNPs for bioaccumulation and histological alterations. The obtained findings revealed that the AgNPs were mostly accumulated in the intestines followed by the gills, muscles, liver, and brain. The accumulated AgNPs caused histological alterations in gills and intestines at the highest concentration (0.08 mg/L). However, very less alterations were caused by the lowest concentration, especially in the intestine. In conclusion, further in-depth research is needed to determine the risks associated with the usage of nanoparticles to reveal their harmful impacts on fish and the aquatic environment. HIGHLIGHTS: The biological fabrication of AgNPs is considered eco-friendly. Chinese medicinal plants play a significant role in AgNPs synthesis. AgNPs have excellent antibacterial activity. AgNPs are bioaccumulated in various organs of fish.


Assuntos
Carpas , Nanopartículas Metálicas , Animais , Prata/toxicidade , Prata/química , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Antibacterianos/toxicidade
2.
Chemosphere ; 341: 139945, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37648158

RESUMO

There is a significant concern about the accessibility of uncontaminated and safe drinking water, a fundamental necessity for human beings. This concern is attributed to the toxic micropollutants from several emission sources, including industrial toxins, agricultural runoff, wastewater discharges, sewer overflows, landfills, algal blooms and microbiota. Emerging micropollutants (EMs) encompass a broad spectrum of compounds, including pharmaceutically active chemicals, personal care products, pesticides, industrial chemicals, steroid hormones, toxic nanomaterials, microplastics, heavy metals, and microorganisms. The pervasive and enduring nature of EMs has resulted in a detrimental impact on global urban water systems. Of late, these contaminants are receiving more attention due to their inherent potential to generate environmental toxicity and adverse health effects on humans and aquatic life. Although little progress has been made in discovering removal methodologies for EMs, a basic categorization procedure is required to identify and restrict the EMs to tackle the problem of these emerging contaminants. The present review paper provides a crude classification of EMs and their associated negative impact on aquatic life. Furthermore, it delves into various nanotechnology-based approaches as effective solutions to address the challenge of removing EMs from water, thereby ensuring potable drinking water. To conclude, this review paper addresses the challenges associated with the commercialization of nanomaterial, such as toxicity, high cost, inadequate government policies, and incompatibility with the present water purification system and recommends crucial directions for further research that should be pursued.


Assuntos
Água Potável , Poluentes Químicos da Água , Purificação da Água , Humanos , Monitoramento Ambiental , Ecossistema , Plásticos , Poluentes Químicos da Água/análise , Nanotecnologia , Purificação da Água/métodos
3.
Environ Res ; 237(Pt 2): 117002, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37648194

RESUMO

The primary barrier to nutrient absorption in fish is the intestinal epithelium, followed by a community of microorganisms known as the gut microbiota, which can be thought of as a hidden organ. The gastrointestinal microbiota of fish plays a key role in the upholding of overall health by maintaining the homeostasis and disease resistance of the host. However, emerging contaminants as the result of anthropogenic activities have significantly led to disruptions and intestinal dysbiosis in fish. Which probably results in fish mortalities and disrupts the balance of an ecosystem. Therefore, we comprehensively seek to compile the effects and consequences of emerging contaminations on fish intestinal microbiota. Additionally, the mitigation strategies including prebiotics, probiotics, plant-based diet, and Biofloc technology are being outlined. Biofloc technology (BFT) can treat toxic materials, i.e., nitrogen components, and convert them into a useful product such as proteins and demonstrated promising elevating technique for the fish intestinal bacterial composition. However, it remains unclear whether the bacterial isolate is primarily responsible for the BFT's removal of nitrate and ammonia and the corresponding removal mechanism. To answer this, real time polymerase chain reaction (RT-PCR) with metagenomics, transcriptomics, and proteomics techniques probably provides a possible solution.

4.
Environ Res ; 236(Pt 1): 116696, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37482126

RESUMO

Haryana is one of the leading states in India in the agricultural and industrial production. With the expansion of these sectors, a continuous increase in water demand is leading to water crises arising from overexploitation and quality deterioration of the available water. Contamination of aquifer resources is a significant concern, because majority of population depends on the groundwater for various agricultural, industrial, and domestic needs. This review article provides an overview of groundwater contamination, associated health risks with different contaminants with regions severely affected by poor water quality, and delves in identifying the sources, by observing and recognising the types of industries dominant in the state with types of effluents discharge. It further suggests the possible mitigation measures such as advanced remedial technologies and proper management practices from the consequent contamination sources. It has been observed during the perusal of various studies and data that the degree of contamination was considerably higher in districts with heavy agro-industrial activities. The groundwater resources in three highly industrialized districts were found to be gravely contaminated with toxic heavy metals. Alongwith heavy metals, the salinity, hardness, nitrate, and fluoride are also posing significant problems in the aquifer resources of Haryana state. The article also discusses various technologies for remediation of different pollutants from groundwater so it can be made potable after treatment.

5.
Curr Pollut Rep ; : 1-21, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37362608

RESUMO

Carbon dots (CDs) or carbon quantum dots (CQDs) have emerged as rising stars in the carbon family due to their diverse applications in various fields. CDs are spherical particles with a well-distributed size of less than 10 nm. Functional CDs are promising nanomaterials with low toxicity, low cost, and enormous applications in the field of bioimaging, optoelectronics, photocatalysis, and sensing. Plastic is non-biodegradable and hazardous to the environment, however extremely durable and used in abundance. During the COVID-19 pandemic, the use of plastic waste, particularly masks, goggles, face shields, and shoe cover, has increased tremendously. It needs to be recycled in a productive way as plastic wastes take hundreds or thousands of years to degrade naturally. The conversion of plastic waste into magnificent CDs has been reported as one of the key alternatives for environmental sustainability and socio-economic benefits. In this review, synthetic routes for the conversion of plastic wastes into CDs utilizing hydrothermal, solvothermal, pyrolysis, flash joule heating, and characterization of these CDs using different techniques, such as Fourier-transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction, and transmission electron microscope, have been discussed. Furthermore, potential applications of these plastic-derived CDs in sensing, catalysis, agronomics, and LED lights are summarized herein.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...