Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Sex Differ ; 14(1): 70, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37817272

RESUMO

INTRODUCTION: Current understanding of sodium (Na+) handling is based on studies done primarily in males. Contrary to the gradual increase in high salt (HS) induced natriuresis over 3-5 days in males, female Sprague Dawley (SD) rats have a robust natriuresis after 1 day of HS. Renal endothelin-1 (ET-1) signaling, through ET receptor A and B, is an important natriuretic pathway and was implicated in our previous dietary salt acclimation studies, however, the contribution of ET receptors to sex-differences in acclimation to dietary Na+ challenges has yet to be clarified. We hypothesized that ET receptors mediate the augmented natriuretic capacity of female rats in response to a HS diet. METHODS: To test our hypothesis, male and female SD rats were implanted with telemeters and randomly assigned to treatment with A-182086, a dual ETA and ETB receptor antagonist, or control. 24-h urine samples were collected and assessed for electrolytes and ET-1. Studies were performed on a normal salt (NS, 0.3% NaCl) diet and after challenging rats with HS (4% NaCl) diet for 1 day. RESULTS: We found that A-182086 increased blood pressure in male and female SD rats fed either diet. Importantly, A-182086 eliminated sex-differences in natriuresis on NS and HS. In particular, A-182086 promotes HS-induced natriuresis in male rats rather than attenuating the natriuretic capacity of females. Further, the sex-difference in urinary ET-1 excretion in NS-fed rats was eliminated by A-182086. CONCLUSION: In conclusion, ET receptors are crucial for mediating sex-difference in the natriuretic capacity primarily through their actions in male rats.


Sodium balance is essential for the human body. Sodium retention in the body can cause an increase in blood pressure. Historical understanding of sodium balance is based on studies done mostly in male subjects. Recently, we showed that male and female rats acclimate to a high salt diet differently. Male rats take 3­5 days to increase sodium excretion while female rats increase sodium excretion after 1 day. Endothelin-1 which signals through two receptors, endothelin receptor subtype A and B, is important for controlling sodium excretion by the kidneys. There are known sex-differences in the ratio and function of endothelin receptors in the kidney. However, the role of endothelin receptors in salt handling during acclimation to increased salt intake is not clear. This study sought to identify whether blocking endothelin receptors eliminates the sex-difference in sodium excretion in response to a high salt diet. We treated male and female rats with a blocker for endothelin receptors and evaluated sodium handling by the kidney. Blockade of endothelin receptors increased sodium excretion in male rats fed a high salt diet; whereas sodium excretion in female rats was not affected by blocking endothelin receptors. These data indicate that ET receptors contribute to male­female differences in sodium handling during adjusting to an increased dietary salt.


Assuntos
Cloreto de Sódio na Dieta , Cloreto de Sódio , Ratos , Masculino , Feminino , Animais , Cloreto de Sódio/farmacologia , Cloreto de Sódio na Dieta/farmacologia , Ratos Sprague-Dawley , Receptor de Endotelina B/fisiologia , Endotelinas , Sódio/metabolismo , Endotelina-1 , Dieta , Aclimatação
2.
medRxiv ; 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37745604

RESUMO

Background: Ambulatory blood pressure (BP) monitoring measures nighttime BP and BP dipping, which are superior to in-clinic BP for predicting cardiovascular disease (CVD), the leading cause of death in America. Compared with other racial/ethnic groups, Black Americans exhibit elevated nighttime BP and attenuated BP dipping, including in young adulthood. Social determinants of health contribute to disparities in CVD risk, but the contribution of neighborhood deprivation on nighttime BP is unclear. Therefore, we examined associations between neighborhood deprivation with nighttime BP and BP dipping in young Black and White adults. Methods: We recruited 21 Black and 26 White participants (20 M/27 F, mean age: 21 years, body mass index: 25±4 kg/m2) for 24-hour ambulatory BP monitoring. We assessed nighttime BP and BP dipping (nighttime:daytime BP ratio). The area deprivation index (ADI) was used to measure neighborhood deprivation. Associations between ADI and ambulatory BP were examined. Results: Black participants exhibited higher nighttime diastolic BP compared with White participants (63±8 mmHg vs 58±7 mmHg, p=0.003), and attenuated BP dipping ratios for both systolic (0.92±0.06 vs 0.86±0.05, p=0.001) and diastolic BP (0.86±0.09 vs 0.78±0.08, p=0.007). Black participants experienced greater neighborhood deprivation compared with White participants (ADI scores: 110±8 vs 97±21, p<0.001), and ADI was associated with attenuated systolic BP dipping (ρ=0.342, p=0.019). Conclusions: Our findings suggest neighborhood deprivation may contribute to higher nighttime BP and attenuated BP dipping, which are prognostic of CVD, and more prevalent in Black adults. Targeted interventions to mitigate the effects of neighborhood deprivation may help to improve nighttime BP. Clinical Trial Registry: URL: https://www.clinicaltrials.gov; Unique identifier: NCT04576338.

3.
Sci Rep ; 13(1): 10051, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344499

RESUMO

Peritoneal dialysis (PD) is associated with increased cardiovascular (CV) risk. Studies of PD-related CV pathology in animal models are lacking despite the clinical importance. Here we introduce the phenotypic evaluation of a rat model of cardiorenal syndrome in response to chronic PD, complemented by a rich transcriptomic dataset detailing chronic PD-induced changes in left ventricle (LV) and kidney tissues. This study aims to determine how PD alters CV parameters and risk factors while identifying pathways for potential therapeutic targets. Sprague Dawley rats underwent Sham or 5/6 nephrectomy (5/6Nx) at 10 weeks of age. Six weeks later an abdominal dialysis catheter was placed in all rats before random assignment to Control or PD (3 daily 1-h exchanges) groups for 8 days. Renal and LV pathology and transcriptomic analysis was performed. The PD regimen reduced circulating levels of BUN in 5/6Nx, indicating dialysis efficacy. PD did not alter blood pressure or cardiovascular function in Sham or 5/6Nx rats, though it attenuated cardiac hypertrophy. Importantly PD increased serum triglycerides in 5/6Nx rats. Furthermore, transcriptomic analysis revealed that PD induced numerous changed transcripts involved with inflammatory pathways, including neutrophil activation and atherosclerosis signaling. We have adapted a uremic rat model of chronic PD. Chronic PD induced transcriptomic changes related to inflammatory signaling that occur independent of 5/6Nx and augmented circulating triglycerides and predicted atherosclerosis signaling in 5/6Nx LV tissues. The changes are indicative of increased CV risk due to PD and highlight several pathways for potential therapeutic targets.


Assuntos
Aterosclerose , Diálise Peritoneal , Ratos , Animais , Ratos Sprague-Dawley , Transcriptoma , Diálise Renal , Diálise Peritoneal/efeitos adversos , Triglicerídeos , Modelos Animais de Doenças
4.
Biomolecules ; 12(3)2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35327604

RESUMO

Cardiovascular (CV) and renal diseases are increasingly prevalent in the United States and globally. CV-related mortality is the leading cause of death in the United States, while renal-related mortality is the 8th. Despite advanced therapeutics, both diseases persist, warranting continued exploration of disease mechanisms to develop novel therapeutics and advance clinical outcomes for cardio-renal health. CV and renal diseases increase with age, and there are sex differences evident in both the prevalence and progression of CV and renal disease. These age and sex differences seen in cardio-renal health implicate sex hormones as potentially important regulators to be studied. One such regulator is G protein-coupled estrogen receptor 1 (GPER1). GPER1 has been implicated in estrogen signaling and is expressed in a variety of tissues including the heart, vasculature, and kidney. GPER1 has been shown to be protective against CV and renal diseases in different experimental animal models. GPER1 actions involve multiple signaling pathways: interaction with aldosterone and endothelin-1 signaling, stimulation of the release of nitric oxide, and reduction in oxidative stress, inflammation, and immune infiltration. This review will discuss the current literature regarding GPER1 and cardio-renal health, particularly in the context of aging. Improving our understanding of GPER1-evoked mechanisms may reveal novel therapeutics aimed at improving cardio-renal health and clinical outcomes in the elderly.


Assuntos
Receptor alfa de Estrogênio , Receptores Acoplados a Proteínas G , Envelhecimento , Animais , Estrogênios , Feminino , Proteínas de Ligação ao GTP , Rim/metabolismo , Masculino , Receptores Acoplados a Proteínas G/metabolismo
5.
Am J Physiol Heart Circ Physiol ; 316(3): H710-H721, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30657727

RESUMO

Cardiovascular-related pathologies are the single leading cause of death in patients with chronic kidney disease (CKD). Previously, we found that a 5/6th nephrectomy model of CKD leads to an upregulation of miR-21-5p in the left ventricle, targeting peroxisome proliferator-activated receptor-α and altering the expression of numerous transcripts involved with fatty acid oxidation and glycolysis. In the present study, we evaluated the potential for knockdown or overexpression of miR-21-5p to regulate lipid content, lipid peroxidation, and mitochondrial respiration in H9C2 cells. Cells were transfected with anti-miR-21-5p (40 nM), pre-miR-21-5p (20 nM), or the appropriate scrambled oligonucleotide controls before lipid treatment in culture or as part of the Agilent Seahorse XF fatty acid oxidation assay. Overexpression of miR-21-5p attenuated the lipid-induced increase in cellular lipid content, whereas suppression of miR-21-5p augmented it. The abundance of malondialdehyde, a product of lipid peroxidation, was significantly increased with lipid treatment in control cells but attenuated in pre-miR-21-5p-transfected cells. This suggests that miR-21-5p reduces oxidative stress. The cellular oxygen consumption rate (OCR) was increased in both pre-miR-21-5p- and anti-miR-21-5p-transfected cells. Levels of intracellular ATP were significantly higher in anti-mR-21-5p-transfected cells. Pre-miR-21-5p blocked additional increases in OCR in response to etomoxir and palmitic acid. Conversely, anti-miR-21-5p-transfected cells exhibited reduced OCR with both etomoxir and palmitic acid, and the glycolytic capacity was concomitantly reduced. Together, these results indicate that overexpression of miR-21-5p attenuates both lipid content and lipid peroxidation in H9C2 cells. This likely occurs by reducing cellular lipid uptake and utilization, shifting cellular metabolism toward reliance on the glycolytic pathway. NEW & NOTEWORTHY Both overexpression and suppression of miR-21-5p augment basal and maximal mitochondrial respiration. Our data suggest that reliance on glycolytic and fatty acid oxidation pathways can be modulated by the abundance of miR-21-5p within the cell. miR-21-5p regulation of mitochondrial respiration can be modulated by extracellular lipids.


Assuntos
Metabolismo dos Lipídeos/genética , MicroRNAs/genética , MicroRNAs/fisiologia , Mitocôndrias/genética , Mitocôndrias/metabolismo , Consumo de Oxigênio/genética , Animais , Linhagem Celular , Ácidos Graxos/metabolismo , Glicólise , Peroxidação de Lipídeos/genética , Malondialdeído/metabolismo , Mioblastos/metabolismo , Oxirredução , Estresse Oxidativo/genética , Ratos
6.
Arterioscler Thromb Vasc Biol ; 36(6): 1254-62, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27079876

RESUMO

OBJECTIVE: This study examined vascular actions of angiotensin 1-7 (ANG 1-7) in human atrial and adipose arterioles. APPROACH AND RESULTS: The endothelium-derived hyperpolarizing factor of flow-mediated dilation (FMD) switches from antiproliferative nitric oxide (NO) to proatherosclerotic hydrogen peroxide in arterioles from humans with coronary artery disease (CAD). Given the known vasoprotective properties of ANG 1-7, we tested the hypothesis that overnight ANG 1-7 treatment restores the NO component of FMD in arterioles from patients with CAD. Endothelial telomerase activity is essential for preserving the NO component of vasodilation in the human microcirculation; thus, we also tested whether telomerase activity was necessary for ANG 1-7-mediated vasoprotection by treating separate arterioles with ANG 1-7±the telomerase inhibitor 2-[[(2E)-3-(2-naphthalenyl)-1-oxo-2-butenyl1-yl]amino]benzoic acid. ANG 1-7 dilated arterioles from patients without CAD, whereas dilation was significantly reduced in arterioles from patients with CAD. In atrial arterioles from patients with CAD incubated with ANG 1-7 overnight, the NO synthase inhibitor NG-nitro-l-arginine methyl ester abolished FMD, whereas the hydrogen peroxide scavenger polyethylene glycol catalase had no effect. Conversely, in vessels incubated with ANG 1-7+2-[[(2E)-3-(2-naphthalenyl)-1-oxo-2-butenyl1-yl]amino]benzoic acid, NG-nitro-l-arginine methyl ester had no effect on FMD, but polyethylene glycol catalase abolished dilation. In cultured human coronary artery endothelial cells, ANG 1-7 significantly increased telomerase activity. These results indicate that ANG 1-7 dilates human microvessels, and dilation is abrogated in the presence of CAD. Furthermore, ANG 1-7 treatment is sufficient to restore the NO component of FMD in arterioles from patients with CAD in a telomerase-dependent manner. CONCLUSIONS: ANG 1-7 exerts vasoprotection in the human microvasculature via modulation of telomerase activity.


Assuntos
Tecido Adiposo/irrigação sanguínea , Angiotensina I/farmacologia , Arteríolas/efeitos dos fármacos , Vasos Coronários/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Telomerase/metabolismo , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Idoso , Arteríolas/enzimologia , Arteríolas/fisiopatologia , Estudos de Casos e Controles , Células Cultivadas , Doença da Artéria Coronariana/enzimologia , Doença da Artéria Coronariana/fisiopatologia , Vasos Coronários/enzimologia , Vasos Coronários/fisiopatologia , Relação Dose-Resposta a Droga , Células Endoteliais/enzimologia , Inibidores Enzimáticos/farmacologia , Feminino , Átrios do Coração , Humanos , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade , Óxido Nítrico/metabolismo , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/agonistas , Proteínas Proto-Oncogênicas/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Telomerase/antagonistas & inibidores , Telomerase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...