Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38508408

RESUMO

Trigeminal neuralgia (TN) is an intense and debilitating orofacial pain. The gold standard treatment for TN is carbamazepine. This antiepileptic drug provides pain relief with limited efficacy and side effects. To study the antinociceptive potential of cannabidiol (CBD) and its fluorinated analog PECS-101 (former HUF-101), we induced unilateral chronic constriction injury of the infraorbital nerve (IoN-CCI) in male Wistar rats. Seven days of treatment with CBD (30 mg/kg), PECS-101 (3, 10, and 30 mg/kg), or carbamazepine (10 and 30 mg/kg) reduced allodynia and hyperalgesia responses. Unlike carbamazepine, CBD and PECS-101 did not impair motor activity. The relief of the hypersensitive reactions has been associated with transient receptor potential vanilloid type 1 (TRPV1) modulation in the trigeminal spinal nucleus. CBD (30 mg/kg) and PECS-101 (10 and 30 mg/kg) reversed the increased expression of TRPV1 induced by IoN-CCI in this nucleus. Using a pharmacological strategy, the combination of the selective TRPV1 antagonist (capsazepine-CPZ - 5 mg/kg) with sub-effective doses of CBD (3 and 10 mg/kg) is also able to reverse the IoN-CCI-induced allodynia and hyperalgesia responses. This effect was accompanied by reduced TRPV1 protein expression in the trigeminal spinal nucleus. Our results suggest that CBD and PECS-101 may benefit trigeminal neuralgia without motor coordination impairments. PECS-101 is more potent against the hypernociceptive and motor impairment induced by TN compared to CBD and carbamazepine. The antinociceptive effect of these cannabinoids is partially mediated by TRPV1 receptors in the caudal part of the trigeminal spinal nucleus, the first central station of orofacial pain processing.


Assuntos
Canabidiol , Neuralgia , Neuralgia do Trigêmeo , Animais , Masculino , Ratos , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Carbamazepina/farmacologia , Carbamazepina/uso terapêutico , Dor Facial/metabolismo , Hiperalgesia/tratamento farmacológico , Neuralgia/tratamento farmacológico , Ratos Wistar , Neuralgia do Trigêmeo/complicações , Neuralgia do Trigêmeo/tratamento farmacológico
2.
J Therm Biol ; 119: 103782, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38176292

RESUMO

Enhanced vascular permeability at the site of injury is a prominent feature in acute inflammatory pain models, commonly assessed through the Evans Blue test. However, this invasive test requires euthanasia, thereby precluding further investigations on the same animal. Due to these limitations, the integration of non-invasive tools such as IRT has been sought. Here, we aimed to evaluate the use of thermography in a common orofacial pain model that employs formalin as a chemical irritant to induce local orofacial inflammation. Male Hannover rats (290-300 g, N = 43) were used. In the first approach, radiometric images were taken before and after formalin administration, assessing temperature changes and extravasated Evans Blue. The second approach included capturing pre- and post-formalin test radiometric images, followed by cytokine measurements in excised vibrissae tissue. Rats were anesthetized for vibrissae tissue collection, allowing correlations between thermographic patterns, nocifensive behavior duration, and cytokine levels in this area. Our findings revealed a positive correlation between local temperature, measured via thermography, and vascular permeability in the contralateral (r2 = 0.3483) and ipsilateral (r2 = 0.4502) side, measured using spectrophotometry. The obtained data supports the notion that thermography-based temperature assessment can effectively evaluate vascular permeability in the orofacial region.


Assuntos
Formaldeído , Termografia , Ratos , Masculino , Animais , Formaldeído/efeitos adversos , Termografia/métodos , Permeabilidade Capilar , Azul Evans/efeitos adversos , Dor Facial/induzido quimicamente , Citocinas
3.
Arch Oral Biol ; 152: 105734, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37244090

RESUMO

Orofacial pain has significant psychological and physiological effects. Citral (3,7-dimethyl-2,6-octadienal) is the main component of Cymbopogon citratus (DC) Stapf, an herb with analgesic properties. Although citral has been considered a potent analgesic, its putative effects on orofacial pain are still unknown. OBJECTIVE: The objective of this study is to test the hypothesis that citral modulates orofacial pain using two experimental models: formalin-induced hyperalgesia in the vibrissae area and during persistent temporomandibular hypernociception using Complete Freund's Adjuvant - CFA test. METHODS: For the formalin test, citral (100 and 300 mg/kg, oral gavage) or its vehicle (Tween 80, 1 %) were given 1 h before the formalin injection subcutaneously (sc) into the vibrissae area. For the CFA model, we analyzed the prophylactic (100 mg/kg of citral by oral gavage, 1 h before CFA injection) and the chronic therapeutic (citral treatment 1-hour post-CFA injection and daily post-CFA injection) effect of citral or its vehicle in animals treated with CFA for 8 days. RESULTS: Citral caused a decrease in formalin-induced local inflammation and the time spent performing nociceptive behavior in a dose-dependent fashion. Similarly, prophylactic and therapeutic citral treatment decreased the CFA-induced persistent mechanical hypernociception in the temporomandibular area. CONCLUSION: Our data strengthen the notion that citral plays a powerful antinociceptive role by decreasing orofacial hypernociception in formalin and CFA models.


Assuntos
Dor Facial , Hiperalgesia , Ratos , Animais , Hiperalgesia/tratamento farmacológico , Dor Facial/tratamento farmacológico , Dor Facial/etiologia , Inflamação/tratamento farmacológico , Inflamação/induzido quimicamente , Analgésicos/farmacologia , Formaldeído
4.
Brain Behav Immun Health ; 30: 100623, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37096172

RESUMO

L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia is a side effect of Parkinson's disease treatment and it is characterized by atypical involuntary movements. A link between neuroinflammation and L-DOPA-induced dyskinesia has been documented. Hydrogen gas (H2) has neuroprotective effects in Parkinson's disease models and has a major anti-inflammatory effect. Our objective is to test the hypothesis that H2 inhalation reduces L-DOPA-induced dyskinesia. 15 days after 6-hydroxydopamine lesions of dopaminergic neurons were made (microinjection into the medial forebrain bundle), chronic L-DOPA treatment (15 days) was performed. Rats were exposed to H2 (2% gas mixture, 1 h) or air (controls) before L-DOPA injection. Abnormal involuntary movements and locomotor activity were conducted. Striatal microglia and astrocyte was analyzed and striatal and plasma samples for cytokines evaluation were collected after the abnormal involuntary movements analysis. H2 inhalation attenuated L-DOPA-induced dyskinesia. The gas therapy did not impair the improvement of locomotor activity achieved by L-DOPA treatment. H2 inhalation reduced activated microglia in the lesioned striatum, which is consistent with the observed reduced pro-inflammatory cytokines levels. Display of abnormal involuntary movements was positively correlated with plasma IL-1ß and striatal TNF-α levels and negatively correlated with striatal IL-10 levels. Prophylactic H2 inhalation decreases abnormal involuntary movements in a preclinical L-DOPA-induced dyskinesia model. The H2 antidyskinetic effect was associated with decreased striatal and peripheral inflammation. This finding has a translational importance to L-DOPA-treated parkinsonian patients' well-being.

5.
J Adhes Dent ; 25(1): 39-50, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36744829

RESUMO

PURPOSE: To evaluate the effect of carbodiimide (EDC) and chitosan (CHI) on the enzymatic activity (EA) and bond strength (BS) of different composite cements to root dentin. MATERIALS AND METHODS: Ninety (90) maxillary canines were sectioned, standardizing the length of the roots. The roots were endodontically treated, prepared, divided into 3 groups according to dentin treatment (distilled water [DW], CHI 0.2 wt%, or EDC 0.5M), and further subdivided into 3 subgroups according to composite cement (RelyX ARC [3M Oral Care], Panavia F 2.0 [Kuraray Noritaki], or RelyX U200 [3M Oral Care]). Of the slices obtained by sectioning, the most cervical of each third were subjected to a push-out test and the most apical were subjected to in-situ zymography. Half of the slices were analyzed immediately, and the other half after 6 months. The results were analyzed with ANOVA or the chi-squared test. RESULTS: RelyX ARC showed higher BS associated with CHI, while RelyX U200 showed higher BS associated with EDC (p = 0.044). For Panavia F 2.0, the treatment did not influence BS (p > 0.05). For the cervical and middle thirds, no differences were observed between the cements, while the apical third revealed higher BS for RelyX U200 (p < 0.001). The highest percentage of adhesive-to-dentin failures was observed for Panavia F 2.0. EDC showed the lowest percentage of adhesive-to-dentin failures. According to zymographic analysis, DW and CHI showed greater fluorescence for RelyX ARC, while EDC exhibited the lowest fluorescence of all cements (p > 0.05). CONCLUSION: The different mechanisms of action of solutions for pre-treatment of intraradicular dentin yielded different results depending on the adhesive used. EDC resulted in higher bond strength and higher enzyme inhibition for RelyX U200, while the treatment with chitosan resulted in higher bond strength and lower enzymatic activity for RelyX ARC. Although EDC and chitosan treatments did not influence the bond strength for Panavia F 2.0, both resulted in higher enzyme inhibition for this composite cement.


Assuntos
Quitosana , Colagem Dentária , Técnica para Retentor Intrarradicular , Quitosana/farmacologia , Carbodi-Imidas/farmacologia , Cimentos de Resina/química , Cimentos Dentários/química , Cimentos de Ionômeros de Vidro/química , Dentina , Teste de Materiais
6.
Neuropharmacology ; 196: 108700, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34246682

RESUMO

The musculoskeletal orofacial pain is a complex symptom of Parkinson's disease (PD) resulting in stomatognathic system dysfunctions aggravated by the disease rigidity and postural instability. We tested the effect of cannabidiol (CBD), a non-psychotomimetic constituent of Cannabis sativa, in PD-related myofascial pain. Wistar adult female and male rats orofacial allodynic and hyperalgesic responses were tested by Von Frey and formalin tests, before and 21 days past 6-OHDA lesion. Algesic response was tested after masseter muscle injection of CBD (10, 50, 100 µg in 10 µL) or vehicle. Males compared to females in all estrous cycles' phases presented reduced orofacial allodynia and hyperalgesia. According to the estrous cycle's phases, females presented distinct orofacial nociceptive responses, being the estrus phase well-chosen for nociceptive analysis after 6-OHDA lesion (phase with fewer hormone alterations and adequate length). Dopaminergic neuron lesion decreased mechanical and inflammatory nociceptive thresholds in females and males in a higher proportion in females. CBD local treatment reduced the increased orofacial allodynia and hyperalgesia, in males and females. The female rats were more sensitive to CBD effect considering allodynia, responding to the lowest dose. Although females and males respond to the effect of three doses of CBD in the formalin test, males showed a superior reduction in the hyperalgesic response. These results indicate that hemiparkinsonian female in the estrus phase and male answer differently to the different doses of CBD therapy and nociceptive tests. CBD therapy is effective for parkinsonism-induced orofacial nociception.


Assuntos
Anticonvulsivantes/farmacologia , Canabidiol/farmacologia , Dor Facial/fisiopatologia , Hiperalgesia/fisiopatologia , Nociceptividade/efeitos dos fármacos , Transtornos Parkinsonianos/fisiopatologia , Analgésicos/farmacologia , Animais , Ciclo Estral/efeitos dos fármacos , Ciclo Estral/fisiologia , Feminino , Masculino , Oxidopamina/toxicidade , Ratos , Ratos Wistar
7.
Br J Pharmacol ; 178(13): 2595-2616, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33751546

RESUMO

BACKGROUND AND PURPOSE: l-DOPA-induced dyskinesia is a debilitating effect of treating Parkinson's disease with this drug. New therapeutic approaches that prevent or attenuate this side effect are needed. EXPERIMENTAL APPROACH: Wistar adult male rats submitted to 6-hydroxydopamine-induced unilateral medial forebrain bundle lesion were treated with l-DOPA (p.o. 20 mg·kg-1 or s.c. 10 mg·kg-1 ) once a day for 14 days. After this period, we tested if doxycycline (40 mg·kg-1 , i.p.) and COL-3 (50 and 100 nmol, i.c.v.) could reverse l-DOPA-induced dyskinesia. In an additional experiment, doxycycline was administered together with l-DOPA to verify if it would prevent l-DOPA-induced dyskinesia development. KEY RESULTS: A single injection of doxycycline or COL-3 attenuated l-DOPA-induced dyskinesia. Co-treatment with doxycycline from the first day of l-DOPA suppressed the onset of dyskinesia. The improved motor response after l-DOPA was not affected by doxycycline or COL-3. Doxycycline treatment was associated with decreased immunoreactivity of FosB, COX-2, the astroglial protein GFAP and the microglial protein OX-42, which were elevated in the basal ganglia of rats exhibiting dyskinesia. Doxycycline decreased metalloproteinase-2/-9 activity, metalloproteinase-3 expression and ROS production. Metalloproteinase-2/-9 activity and production of ROS in the basal ganglia of dyskinetic rats showed a significant correlation with the intensity of dyskinesia. CONCLUSION AND IMPLICATIONS: The present study demonstrates the anti-dyskinetic potential of doxycycline and its analogue compound COL-3 in hemiparkinsonian rats. Given the long-established and safe clinical use of doxycycline, this study suggests that these drugs might be tested to reduce or prevent l-DOPA-induced dyskinesia in Parkinson's patients.


Assuntos
Antiparkinsonianos , Discinesia Induzida por Medicamentos , Levodopa , Animais , Corpo Estriado , Modelos Animais de Doenças , Doxiciclina , Discinesia Induzida por Medicamentos/tratamento farmacológico , Masculino , Metaloproteinase 2 da Matriz , Metaloproteinase 3 da Matriz , Metaloproteinase 9 da Matriz , Oxidopamina , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Espécies Reativas de Oxigênio , Tetraciclinas
8.
J Cell Physiol ; 236(9): 6571-6580, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33611790

RESUMO

Temporomandibular disorder (TMD) is characterized by acute or chronic orofacial pain, which can be associated with inflammatory processes in the temporomandibular joint (TMJ) and emotional disorders. Peripheral and central sensitization in painful orofacial processes is common, and it can be triggered by peripheral inflammatory challenge with consequent neuroinflammation phenomena. Such neuroinflammation comes from inflammatory products from supportive cells, blood-brain barrier, and extracellular matrix. Here, we evaluated the possible recruitment of limbic structures for modified matrix metalloproteinases (MMPs) expression and activity during temporomandibular inflammation-induced orofacial persistent pain. The inflammatory process in TMJs of rats was induced by Freund's Complete Adjuvant (CFA) administration. The activity and expression of MMPs-2 and 9 were assessed by in situ zymography and conventional zymography, respectively. A glial colocalization with the MMPs was performed using immunofluorescence. The results evidenced both short- and long-term alterations on MMP-2 and -9 expression in the limbic structures following CFA-induced temporomandibular inflammation. The gelatinolytic activity was increased in the central amygdala, hippocampus, hypothalamus, ventrolateral periaqueductal gray (vlPAG), superior colliculus, and inferior colliculus. Finally, an increase of colocalization of MMP-2/GFAP and MMP-9/GFAP in CFA-induced inflammation groups was observed when compared with saline groups in the central amygdala and vlPAG. It is possible to suggest that glial activation is partly responsible for the production of gelatinases in the persistent orofacial pain, and it is involved in the initiation and maintenance of this process, indicating that inhibition of MMPs might be pursued as a potential new therapeutic target for TMD.


Assuntos
Inflamação/patologia , Sistema Límbico/enzimologia , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Transtornos da Articulação Temporomandibular/enzimologia , Transtornos da Articulação Temporomandibular/patologia , Articulação Temporomandibular/enzimologia , Articulação Temporomandibular/patologia , Tonsila do Cerebelo/metabolismo , Animais , Astrócitos/metabolismo , Dor Facial/complicações , Adjuvante de Freund , Gelatina/metabolismo , Gelatinases/metabolismo , Sistema Límbico/patologia , Masculino , Ratos Wistar , Regulação para Cima
9.
Sci Rep ; 10(1): 8787, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32472004

RESUMO

Psychological stress and occlusal alteration are important etiologic factors for temporomandibular/masticatory muscular disorders. In particular, the exact physiologic mechanism underlying the relation by occlusal alteration and temporomandibular disorders remains unclear. Our purpose was to test the hypothesis that benzodiazepine therapy is able to prevent metabolic and vascular changes in the medial pterygoid muscle of rats under chronic stress after 14 days of unilateral exodontia. Adult Wistar rats were submitted to unpredictable chronic mild stress (10 days) and/or unilateral exodontia and their plasma and medial pterygoid muscles were removed for analysis. A pre-treatment with diazepam was used to verify its effect on stress. The parameters evaluated included anxiety behavior, plasma levels of corticosterone, metabolic activity by succinate dehydrogenase, capillary density by laminin staining and ultrastructural findings by transmission electron microscopy. Occlusal instability induced anxiety-like behavior on elevated plus-maze test and diazepam administration blocked the appearance of this behavior. Unilateral exodontia promoted in the contralateral muscle an increase of oxidative fibers and capillaries and modification of sarcoplasmic reticulum. Chronic stress caused increased glycolytic metabolism, reduced capillary density and morphological changes in mitochondria on both sides. Association of both factors induced a glycolytic pattern in muscle and hemodynamic changes. Pharmacological manipulation with diazepam inhibited the changes in the medial pterygoid muscle after stress. Our results reveal a preventive benzodiazepine treatment for stress and occlusal instability conditions affecting masticatory muscle disorders. In addition, provide insights into the mechanisms by which chronic stress and exodontia might be involved in the pathophysiology of masticatory muscular dysfunctions.


Assuntos
Benzodiazepinas/administração & dosagem , Músculos da Mastigação/fisiopatologia , Estresse Psicológico/tratamento farmacológico , Transtornos da Articulação Temporomandibular/tratamento farmacológico , Animais , Benzodiazepinas/farmacologia , Estudos de Casos e Controles , Diazepam/efeitos adversos , Modelos Animais de Doenças , Masculino , Músculos da Mastigação/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Ratos , Ratos Wistar , Estresse Psicológico/induzido quimicamente , Transtornos da Articulação Temporomandibular/fisiopatologia , Extração Dentária , Resultado do Tratamento
10.
Nitric Oxide ; 93: 90-101, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31604145

RESUMO

The mechanisms underlying temporomandibular disorders following orofacial pain remain unclear. Hydrogen sulfide (H2S), a newly identified gasotransmitter, has been reported to modulate inflammation. Cystathionine γ-lyase (CSE) is responsible for the systemical production of H2S, which exerts both pro- and antinociceptive effects through inflammation. In the current study, we investigated whether the endogenous H2S production pathway contributes to arousal and maintenance of orofacial inflammatory pain, through the investigation of the effects of a CSE inhibitor, propargyglycine (PAG), in a rat CFA (Complete Freund Adjuvant)-induced temporomandibular inflammation model to mimic persistent pain in the orofacial region. For this, rats received either CFA or saline in the temporomandibular joints (TMJs), and after 3 or 14 days, they received a single injection of PAG or saline and were evaluated for nociception with the von Frey and formalin test. Also, pro-inflammatory cytokines, tumor necrosis factor-α (TNF-α), and interleukin-1ß (IL-1ß) were analyzed in TMJs and trigeminal ganglion (TG). In this last one, glial cells reactivity was also verified. Endogenous H2S production rate were measured in both, TMJ and TG. Our results indicated decreased allodynia and hyperalgesic responses in rats submitted to CFA after injection of PAG. Moreover, PAG inhibited leucocyte migration to temporomandibular synovial fluid after 3 and 14 days of inflammation. PAG was able to reduce levels of CBS, CSE, TNF-α, and IL-1ß in the TMJ and TG, after 13 days of CFA injection. The observed increased activation of glial cells in the trigeminal ganglia on the 14th day of inflammation can be prevented by the highest dose of PAG. Finally, CBS and CSE expression, and endogenous H2S production rate in the TMJ and TG was found higher in rats with persistent temporomandibular inflammation compared to rats injected with saline and PAG was able to prevent this elevation. Our results elucidated the molecular mechanisms by which H2S exerts its pro-inflammatory and pro-nociceptive role in the orofacial region by alterations in both local tissue and TG.


Assuntos
Alcinos/uso terapêutico , Glicina/análogos & derivados , Sulfeto de Hidrogênio/metabolismo , Hiperalgesia/tratamento farmacológico , Inflamação/metabolismo , Dor/tratamento farmacológico , Articulação Temporomandibular/metabolismo , Animais , Cistationina gama-Liase/antagonistas & inibidores , Inibidores Enzimáticos/uso terapêutico , Glicina/uso terapêutico , Interleucina-1beta/metabolismo , Masculino , Neuroglia/efeitos dos fármacos , Ratos Wistar , Gânglio Trigeminal/citologia , Gânglio Trigeminal/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
11.
Am J Physiol Regul Integr Comp Physiol ; 317(2): R223-R231, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31091153

RESUMO

Accurate diagnosis and treatment of pain is dependent on knowledge of the variables that might alter this response. Some of these variables are the locality of the noxious stimulus, the sex of the individual, and the presence of chronic diseases. Among these chronic diseases, hypertension is considered a serious and silent disease that has been associated with hypoalgesia. The main goal of this study was to evaluate the potential nociceptive differences in spontaneously hypertensive rats (SHR) regarding the locality of the stimulus, i.e., the temporomandibular joint or paw, the sex, and the role of ovarian hormones in a model of mechanical nociception (Von Frey test) or formalin-induced inflammatory nociception. Our results indicate that SHR had lower orofacial mechanical nociception beyond the lower mechanical nociception in the paw compared with WKY rats. In a model of formalin-induced inflammatory nociception, SHR also had decreased nociception compared with normotensive rats. We also sought to evaluate the influence of sex and ovarian hormones on orofacial mechanical nociception in SHR. We observed that female SHR had higher mechanical nociception than male SHR only in the paw, but it had higher formalin-induced orofacial nociception than male SHR. Moreover, the absence of ovarian hormones caused an increase in mean arterial pressure and a decrease in paw nociception in female SHR.


Assuntos
Hormônios/farmacologia , Hipertensão/fisiopatologia , Nociceptividade/fisiologia , Caracteres Sexuais , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Feminino , Hormônios/metabolismo , Hipertensão/metabolismo , Masculino , Nociceptividade/efeitos dos fármacos , Ovário , Dor/fisiopatologia , Medição da Dor , Ratos Endogâmicos SHR/metabolismo , Ratos Endogâmicos WKY
12.
Neurol Res ; 41(7): 633-643, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31002029

RESUMO

Objective: Animal models of chronic pain have demonstrated that glial cells are promising target for development of analgesic drugs. However, preclinical studies on glial response under chronic pain conditions vary depending on the cellular markers, the species used, the experimental design and model. Therefore, we investigate the expression profile of GFAP and Iba-1 during the behavioral manifestation of sensory disorder in inflammatory and neuropathic pain models. Methods: the expression profile of fibrillary acidic protein (GFAP) and ionized calcium binding adaptor molecule-1 (Iba-1) were quantitated in the spinal dorsal horn of Balb/C mice submitted to six models of chronic pain. Protein analysis was performed by western blot and the results colligated with pain-related behavior. Results: Using the same method to quantitate proteins we observed that while GFAP is upregulated after axotomy, partial nerve injury and cutaneous inflammation, its expression is not changed during muscle inflammation, non-inflammatory muscle pain, and in a viral-associated pain. Differently, Iba-1 is downregulated after axotomy but upregulated after partial lesion of peripheral nerve as well as after virus inoculation and during non-inflammatory muscle pain. Cutaneous and muscle inflammation induced no change in Iba-1 expression in the dorsal horn.In spite of a marked time-dependent variation in protein expression, mechanical allodynia was present at any time of all the models investigated. Discussion: Under distinct pain conditions, GFAP and Iba-1 expression is dependent on the origin of the stimulus, disease progression and tissue affected. Moreover, their expression and is not necessarily associated to the behavior manifestation of pain.


Assuntos
Proteínas de Ligação ao Cálcio/biossíntese , Dor Crônica/metabolismo , Proteína Glial Fibrilar Ácida/biossíntese , Inflamação/metabolismo , Proteínas dos Microfilamentos/biossíntese , Neuralgia/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Animais , Modelos Animais de Doenças , Regulação para Baixo , Inflamação/complicações , Inflamação/fisiopatologia , Masculino , Camundongos , Músculos/fisiopatologia , Nervo Isquiático/lesões , Pele/fisiopatologia , Regulação para Cima
13.
J Neural Transm (Vienna) ; 125(10): 1403-1415, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30109452

RESUMO

The prevalence of Parkinson's disease, which affects millions of people worldwide, is increasing due to the aging population. In addition to the classic motor symptoms caused by the death of dopaminergic neurons, Parkinson's disease encompasses a wide range of nonmotor symptoms. Although novel disease-modifying medications that slow or stop Parkinson's disease progression are being developed, drug repurposing, which is the use of existing drugs that have passed numerous toxicity and clinical safety tests for new indications, can be used to identify treatment compounds. This strategy has revealed that tetracyclines are promising candidates for the treatment of Parkinson's disease. Tetracyclines, which are neuroprotective, inhibit proinflammatory molecule production, matrix metalloproteinase activity, mitochondrial dysfunction, protein misfolding/aggregation, and microglial activation. Two commonly used semisynthetic second-generation tetracycline derivatives, minocycline and doxycycline, exhibit effective neuroprotective activity in experimental models of neurodegenerative/ neuropsychiatric diseases and no substantial toxicity. Moreover, novel synthetic tetracyclines with different biological properties due to chemical tuning are now available. In this review, we discuss the multiple effects and clinical properties of tetracyclines and their potential use in Parkinson's disease treatment. In addition, we examine the hypothesis that the anti-inflammatory activities of tetracyclines regulate inflammasome signaling. Based on their excellent safety profiles in humans from their use for over 50 years as antibiotics, we propose the repurposing of tetracyclines, a multitarget antibiotic, to treat Parkinson's disease.


Assuntos
Reposicionamento de Medicamentos , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Tetraciclinas/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Apoptose/efeitos dos fármacos , Doxiciclina/farmacologia , Doxiciclina/uso terapêutico , Sequestradores de Radicais Livres/farmacologia , Sequestradores de Radicais Livres/uso terapêutico , Humanos , Inflamassomos/antagonistas & inibidores , Minociclina/farmacologia , Minociclina/uso terapêutico , Mitocôndrias/efeitos dos fármacos , Estrutura Molecular , Fármacos Neuroprotetores/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico , Agregados Proteicos/efeitos dos fármacos , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/administração & dosagem , Relação Estrutura-Atividade , Tetraciclinas/química , Tetraciclinas/farmacologia
14.
Physiol Behav ; 188: 128-133, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29425970

RESUMO

Hydrogen sulfide (H2S) is an endogenous neuromodulator produced mainly by the enzyme cystathionine gamma-lyase (CSE) in peripheral tissues. A pronociceptive role of endogenously produced H2S has been previously reported by our group in a model of orofacial inflammatory pain. Using the established persistent orofacial pain rat model induced by complete Freund's adjuvant (CFA) injection into temporomandibular joint (TMJ), we have now investigated the putative role of endogenous H2S modulating hypernociceptive responses. Additionally, plasmatic extravasation on TMJ was measured following different treatments by Evans blue dye quantification. Thus, rats were submitted to Von Frey and Formalin tests in orofacial region before and after pharmacological inhibition of the CSE-H2S system combined or not with CFA-induced TMJ inflammation. Pretreatment with CSE inhibitor, propargylglycine (PAG; 88.4 µmol/kg) reduced temporomandibular inflammatory pain when injected locally as well as systemically. In particular, local PAG injection seems to be more effective for hypernociceptive responses in orofacial persistent inflammation since its action is evidenced in the majority analyzed periods of the inflammatory process compared to its systemic use. Moreover, local injection seems to act on temporomandibular vascular permeability, evidenced by decreased plasmatic extravasation induced by local PAG administration. Our data are consistent with the notion that the endogenous synthetized gas H2S modulates persistent orofacial pain responses revealing the pharmacological importance of the CSE inhibitor as a possible therapeutic target for their control.


Assuntos
Cistationina gama-Liase/metabolismo , Dor Facial/enzimologia , Dor Facial/etiologia , Inflamação/complicações , Inflamação/patologia , Articulação Temporomandibular/patologia , Alcinos/uso terapêutico , Análise de Variância , Animais , Inibidores Enzimáticos/uso terapêutico , Dor Facial/complicações , Dor Facial/tratamento farmacológico , Adjuvante de Freund/toxicidade , Glicina/análogos & derivados , Glicina/uso terapêutico , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Inflamação/induzido quimicamente , Masculino , Medição da Dor , Ratos , Ratos Wistar , Fatores de Tempo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...