Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 11(9)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36139762

RESUMO

Exercise has beneficial effects on energy balance and also improves metabolic health independently of weight loss. Adipose tissue function is a critical denominator of a healthy metabolism but the adaptation of adipocytes in response to exercise is insufficiently well understood. We have previously shown that one aerobic exercise session was associated with increased expression of antioxidant and cytoprotective genes in white adipose tissue (WAT). In the present study, we evaluate the chronic effects of physical exercise on WAT redox homeostasis and mitochondrial function. Adult male Wistar rats were separated into two groups: a control group that did not exercise and a group that performed running exercise sessions on a treadmill for 30 min, 5 days per week for 9 weeks. Reactive oxygen species (ROS) generation, antioxidant enzyme activities, mitochondrial function, markers of oxidative stress and inflammation, and proteins related to DNA damage response were analyzed. In WAT from the exercise group, we found higher mitochondrial respiration in states I, II, and III of Complex I and Complex II, followed by an increase in ATP production, and the ROS/ATP ratio when compared to tissues from control rats. Regarding redox homeostasis, NADPH oxidase activity, protein carbonylation, and lipid peroxidation levels were lower in WAT from the exercise group when compared to control tissues. Moreover, antioxidant enzymatic activity, reduced glutathione/oxidized glutathione ratio, and total nuclear factor erythroid-2, like-2 (NFE2L2/NRF2) protein levels were higher in the exercise group compared to control. Finally, we found that exercise reduced the phosphorylation levels of H2AX histone (γH2AX), a central protein that contributes to genome stability through the signaling of DNA damage. In conclusion, our results show that chronic exercise modulates redox homeostasis in WAT, improving antioxidant capacity, and mitochondrial function. This hormetic remodeling of adipocyte redox balance points to improved adipocyte health and seems to be directly associated with the beneficial effects of exercise.

2.
Molecules ; 27(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35208941

RESUMO

The Piper species are a recognized botanical source of a broad structural diversity of lignans and its derivatives. For the first time, Piper tectoniifolium Kunth is presented as a promising natural source of the bioactive (-)-grandisin. Phytochemical analyses of extracts from its leaves, branches and inflorescences showed the presence of the target compound in large amounts, with leaf extracts found to contain up to 52.78% in its composition. A new HPLC-DAD-UV method was developed and validated to be selective for the identification of (-)-grandisin being sensitive, linear, precise, exact, robust and with a recovery above 90%. The absolute configuration of the molecule was determined by X-ray diffraction. Despite the identification of several enantiomers in plant extracts, the major isolated substance was characterized to be the (-)-grandisin enantiomer. In vascular reactivity tests, it was shown that the grandisin purified from botanical extracts presented an endothelium-dependent vasorelaxant effect with an IC50 of 9.8 ± 1.22 µM and around 80% relaxation at 30 µM. These results suggest that P. tectoniifolium has the potential to serve as a renewable source of grandisin on a large scale and the potential to serve as template for development of new drugs for vascular diseases with emphasis on disorders related to endothelial disfunction.


Assuntos
Furanos/química , Lignanas/química , Piper/química , Extratos Vegetais/química , Furanos/metabolismo , Lignanas/metabolismo , Piper/metabolismo
3.
Cardiovasc Drugs Ther ; 35(4): 719-732, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33245463

RESUMO

PURPOSE: In the present study, the therapeutic efficacy of a selective BKCa channel opener (compound X) in the treatment of monocrotaline (MCT)-induced pulmonary arterial hypertension (PAH) was investigated. METHODS: PAH was induced in male Wistar rats by a single injection of MCT. After two weeks, the MCT-treated group was divided into two groups that were either treated with compound X or vehicle. Compound X was administered daily at 28 mg/kg. Electrocardiographic, echocardiographic, and haemodynamic analyses were performed; ex vivo evaluations of pulmonary artery reactivity, right ventricle (RV) and lung histology as well as expression levels of α and ß myosin heavy chain, brain natriuretic peptide, and cytokines (TNFα and IL10) in heart tissue were performed. RESULTS: Pulmonary artery rings of the PAH group showed a lower vasodilatation response to acetylcholine, suggesting endothelial dysfunction. Compound X promoted strong vasodilation in pulmonary artery rings of both control and MCT-induced PAH rats. The untreated hypertensive rats presented remodelling of pulmonary arterioles associated with increased resistance to pulmonary flow; increased systolic pressure, hypertrophy and fibrosis of the RV; prolongation of the QT and Tpeak-Tend intervals (evaluated during electrocardiogram); increased lung and liver weights; and autonomic imbalance with predominance of sympathetic activity. On the other hand, treatment with compound X reduced pulmonary vascular remodelling, pulmonary flow resistance and RV hypertrophy and afterload. CONCLUSION: The use of a selective and potent opener to activate the BKCa channels promoted improvement of haemodynamic parameters and consequent prevention of RV maladaptive remodelling in rats with MCT-induced PAH.


Assuntos
Agonistas dos Canais de Cálcio , Canais de Potássio Ativados por Cálcio de Condutância Alta , Hipertensão Arterial Pulmonar , Quinolinas/farmacologia , Resistência Vascular/efeitos dos fármacos , Vasoconstrição/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Animais , Agonistas dos Canais de Cálcio/metabolismo , Agonistas dos Canais de Cálcio/farmacocinética , Modelos Animais de Doenças , Canais de Potássio Ativados por Cálcio de Condutância Alta/agonistas , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Hipertensão Arterial Pulmonar/tratamento farmacológico , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/fisiopatologia , Ratos , Ratos Wistar , Resultado do Tratamento , Remodelação Vascular/efeitos dos fármacos , Função Ventricular Direita/efeitos dos fármacos
4.
PLoS One ; 15(10): e0240060, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33095799

RESUMO

BACKGROUND AND AIMS: Mitochondrial swelling is involved in the pathogenesis of many human diseases associated with oxidative stress including obesity. One of the strategies for prevention of deleterious effects related to obesity and overweight is engaging in regular physical activity, of which high intensity interval training (HIIT) is efficient in promoting biogenesis and improving the function of mitochondria. Therefore, our aims were to investigate the effects of HIIT on metabolic and neuro-cardiovascular dynamic control and mitochondrial swelling induced by high-fat diet (HFD). METHODS AND RESULTS: Twenty-three male Wistar rats (60 - 80g) were divided into 4 subgroups: control (C), HIIT, HFD and HFD+HIIT. The whole experimentation period lasted for 22 weeks and HIIT sessions were performed 5 days a week during the last 4 weeks. At the end of the experiments, fasting glucose and insulin tolerance tests were performed. Cerebral microcirculation was analyzed using cortical intravital microscopy for capillary diameter and functional density. Cardiac function and ergoespirometric parameters were also investigated. Mitochondrial swelling was evaluated on brain and heart extracts. HFD promoted an increase on body adiposity (p<0.001), fasting glucose levels (p<0.001), insulin resistance index (p<0.05), cardiac hypertrophy index (p<0.05) and diastolic blood pressure (p<0.05), along with worsened cardiac function (p<0.05), reduced functional cerebral capillary density (p<0.05) and its diameter (p<0.01), and heart and brain mitochondrial function (p<0.001). HFD did not affect any ergoespirometric parameter. After 4 weeks of training, HIIT was able to improve cardiac hypertrophy index, diastolic blood pressure, cerebral functional capillary density (p<0.01) and heart and brain mitochondrial swelling (p<0.001). CONCLUSION: In animals subjected to HFD, HIIT ameliorated both cerebral mitochondrial swelling and functional capillary density, but it did not improve cardiovascular function suggesting that the cardiovascular dysfunction elicited by HFD was not due to heart mitochondrial swelling.


Assuntos
Sistema Cardiovascular/patologia , Dieta Hiperlipídica , Mitocôndrias/fisiologia , Condicionamento Físico Animal , Adiposidade , Animais , Glicemia/análise , Pressão Sanguínea , Teste de Tolerância a Glucose , Hemodinâmica , Hipertrofia/patologia , Resistência à Insulina , Masculino , Microcirculação , Obesidade/metabolismo , Obesidade/patologia , Ratos , Ratos Wistar
5.
Drug Des Devel Ther ; 14: 3337-3350, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32884238

RESUMO

INTRODUCTION: Diabetic obese patients are susceptible to the development of cardiovascular disease, including hypertension and cardiac dysfunction culminating in diabetic cardiomyopathy (DC), which represents a life-threatening health problem with increased rates of morbidity and mortality. The aim of the study is to characterize the effects of a new benzofuran N-acylhydrazone compound, LASSBio-2090, on metabolic and cardiovascular alterations in Zucker diabetic fatty (ZDF) rats presenting DC. METHODS: Male non-diabetic lean Zucker rats (ZL) and ZDF rats treated with vehicle (dimethylsulfoxide) or LASSBio-2090 were used in this study. Metabolic parameters, cardiovascular function, left ventricle histology and inflammatory protein expression were analyzed in the experimental groups. RESULTS: LASSBio-2090 administration in ZDF rats reduced glucose levels to 85.0 ± 1.7 mg/dL (p < 0.05). LASSBio-2090 also lowered the cholesterol and triglyceride levels from 177.8 ± 31.2 to 104.8 ± 5.3 mg/dL and from 123.0 ± 11.4 to 90.9 ± 4.8 mg/dL, respectively, in obese diabetic rats (p < 0.05). LASSBio-2090 normalized plasma insulin, insulin sensitivity and endothelial function in aortas from diabetic animals (p < 0.05). It also enhanced systolic and diastolic left-ventricular function and reverted myocardial remodeling by blocking the threefold elevation of TNF-α levels in hearts from ZDF rats. CONCLUSION: LASSBio-2090 alleviates metabolic disturbance and cardiomyopathy in an obese and diabetic rat model, thus representing a novel strategy for the treatment of cardiovascular complications in obesity-associated type 2 diabetes mellitus.


Assuntos
Benzofuranos/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Cardiomiopatias Diabéticas/tratamento farmacológico , Obesidade/tratamento farmacológico , Animais , Benzofuranos/administração & dosagem , Benzofuranos/química , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatias Diabéticas/metabolismo , Injeções Intraperitoneais , Masculino , Estrutura Molecular , Obesidade/metabolismo , Ratos , Ratos Zucker
6.
Int J Mol Sci ; 21(10)2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32429059

RESUMO

This study aims to investigate the cardiac electrical remodeling associated with intoxication by methylmercury (MeHg). We evaluated the chronic effects of MeHg on in vivo electrocardiograms and on ex vivo action potentials and depolarizing (ICa-L) and repolarizing (Ito) currents. The acute effect of MeHg was evaluated on HEK293 cells expressing human ERG, Kv4.3 and KCNQ1/KCNE1 channels. Chronic MeHg treatment increased QTc and Tpeak-Tend interval duration, prolonged action potential duration and decreased amplitude of Ito and ICa-L. In addition, heterologously expressed IhKv4.3, IhERG or IhKCNQ1/KCNE1 decreased after acute exposure to MeHg at subnanomolar range. The introduction of the in vitro effects of MeHg in a computer model of human ventricular action potentials triggered early afterdepolarizations and arrhythmia. In conclusion, cardiac electrical remodeling induced by MeHg poisoning is related to the reduction of Ito and ICa-L. The acute effect of MeHg on hKv4.3; hERG and hKCNQ1/KCNE1 currents and their transposition to in silico models show an association between MeHg intoxication and acquired Long QT Syndrome in humans. MeHg can exert its high toxicity either after chronic or acute exposure to concentrations as low as picomolar.


Assuntos
Arritmias Cardíacas/mortalidade , Arritmias Cardíacas/fisiopatologia , Remodelamento Atrial/fisiologia , Fenômenos Eletrofisiológicos/fisiologia , Compostos de Metilmercúrio/intoxicação , Potenciais de Ação , Animais , Canais de Cálcio/metabolismo , Simulação por Computador , Suscetibilidade a Doenças , Células HEK293 , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Humanos , Masculino , Modelos Cardiovasculares , Canais de Potássio/metabolismo , Ratos Wistar , Redução de Peso
7.
PLoS One ; 13(1): e0190355, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29304184

RESUMO

AIM: Thyroid dysfunctions can increase the risk of myocardial ischemia and infarction. However, the repercussions on cardiac ischemia/reperfusion (IR) injury remain unclear so far. We report here the effects of hypothyroidism and thyrotoxicosis in the susceptibility to IR injury in isolated rat hearts compared to euthyroid condition and the potential role of antioxidant enzymes. METHODS: Hypothyroidism and thyrotoxicosis were induced by administration of methimazole (MMZ, 300 mg/L) and thyroxine (T4, 12 mg/L), respectively in drinking water for 35 days. Isolated hearts were submitted to IR and evaluated for mechanical dysfunctions and infarct size. Superoxide dismutase types 1 and 2 (SOD1 and SOD2), glutathione peroxidase types 1 and 3 (GPX 1 and GPX3) and catalase mRNA levels were assessed by quantitative RT-PCR to investigate the potential role of antioxidant enzymes. RESULTS: Thyrotoxicosis elicited cardiac hypertrophy and increased baseline mechanical performance, including increased left ventricle (LV) systolic pressure, LV developed pressure and derivatives of pressure (dP/dt), whereas in hypothyroid hearts exhibited decreased dP/dt. Post-ischemic recovery of LV end-diastolic pressure (LVEDP), LVDP and dP/dt was impaired in thyrotoxic rat hearts, whereas hypothyroid hearts exhibited improved LVEDP and decreased infarct size. Catalase expression was decreased by thyrotoxicosis. CONCLUSION: Thyrotoxicosis was correlated, at least in part, to cardiac remodeling and increased susceptibility to IR injury possibly due to down-regulation of antioxidant enzymes, whereas hypothyroid hearts were less vulnerable to IR injury.


Assuntos
Traumatismo por Reperfusão Miocárdica/sangue , Traumatismo por Reperfusão Miocárdica/patologia , Tiroxina/sangue , Tri-Iodotironina/sangue , Animais , Masculino , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
Drug Des Devel Ther ; 11: 553-562, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28293100

RESUMO

BACKGROUND: This work evaluated the hypothesis that 3,4-methylenedioxybenzoyl-2-thienylhydrazone (LASSBio-294), an agonist of adenosine A2A receptor, could be beneficial for preventing cardiac dysfunction due to hypertension associated with myocardial infarction (MI). METHODS: Male spontaneously hypertensive rats (SHR) were randomly divided into four groups (six animals per group): sham-operation (SHR-Sham), and myocardial infarction rats (SHR-MI) were treated orally either with vehicle or LASSBio-294 (10 and 20 mg.kg-1.d-1) for 4 weeks. Echocardiography and in vivo hemodynamic parameters measured left ventricle (LV) structure and function. Exercise tolerance was evaluated using a treadmill test. Cardiac remodeling was accessed by LV collagen deposition and tumor necrosis factor α expression. RESULTS: Early mitral inflow velocity was significantly reduced in the SHR-MI group, and there was significant recovery in a dose-dependent manner after treatment with LASSBio-294. Exercise intolerance observed in the SHR-MI group was prevented by 10 mg.kg-1.d-1 of LASS-Bio-294, and exercise tolerance exceeded that of the SHR-Sham group at 20 mg.kg-1.d-1. LV end-diastolic pressure increased after MI, and this was prevented by 10 and 20 mg.kg-1.d-1 of LASSBio-294. Sarcoplasmic reticulum Ca2+ ATPase levels were restored in a dose-dependent manner after treatment with LASSBio-294. Fibrosis and inflammatory processes were also counteracted by LASSBio-294, with reductions in LV collagen deposition and tumor necrosis factor α expression. CONCLUSION: In summary, oral administration of LASSBio-294 after MI in a dose-dependent manner prevented the development of cardiac dysfunction, demonstrating this compound's potential as an alternative treatment for heart failure in the setting of ischemic heart disease with superimposed chronic hypertension.


Assuntos
Agonistas do Receptor A2 de Adenosina/uso terapêutico , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/prevenção & controle , Hidrazonas/uso terapêutico , Infarto do Miocárdio/complicações , Infarto do Miocárdio/fisiopatologia , Tiofenos/uso terapêutico , Agonistas do Receptor A2 de Adenosina/administração & dosagem , Administração Oral , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Insuficiência Cardíaca/fisiopatologia , Hidrazonas/administração & dosagem , Masculino , Infarto do Miocárdio/patologia , Ratos , Ratos Endogâmicos SHR , Tiofenos/administração & dosagem
9.
J Steroid Biochem Mol Biol ; 138: 267-72, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23831356

RESUMO

High doses of anabolic androgenic steroids (AAS) impair the cardioprotective effects of exercise against ischemia/reperfusion (I/R) insult, possibly through cellular redox imbalance. Here, the effect of nandrolone decanoate (DECA) treatment on heart redox metabolism was investigated during I/R in sedentary and exercised rats. DECA treatment significantly reduced superoxide dismutase and glutathione reductase activities in exercised rats after heart reperfusion. Catalase and glutathione peroxidase activities were not affected by DECA in both sedentary and trained rats, regardless the I/R period. DECA also induced myocardial oxidative stress, as evidenced by the reduced levels of total reduced thiols after heart reperfusion in exercised rats treated with the anabolic steroid. These results indicate that cardiotoxic effects of supraphysiological doses of AAS involve reduced heart antioxidant capacity.


Assuntos
Anabolizantes/efeitos adversos , Coração/efeitos dos fármacos , Condicionamento Físico Animal/fisiologia , Animais , Dequalínio/análogos & derivados , Dequalínio/farmacologia , Glutationa Redutase/metabolismo , Coração/fisiologia , Masculino , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo
10.
Arq Bras Cardiol ; 97(4): 324-31, 2011 Oct.
Artigo em Inglês, Português | MEDLINE | ID: mdl-21971631

RESUMO

BACKGROUND: Tramadol is a centrally acting analgesic, whose mechanism of action involves opioid-receptor activation. Previously, we have shown that tramadol and its enantiomers had a negative inotropic effect on the papillary muscle in which the (+)-enantiomer is more potent than (-)- and (±)-tramadol. OBJECTIVE: In this study, we investigated the effects of tramadol and its enantiomers on L-type calcium current (ICa-L). METHODS: The experiments were carried out in isolated Wistar rat ventricular myocytes by using the whole cell patch clamp technique. RESULTS: Tramadol (200 µM) reduced the peak amplitude of ICa-L at potentials from 0 to +50 mV. At 0 mV, I(Ca-L) was reduced by 33.7 ± 7.2%. (+)- and (-)-tramadol (200 µM) produced a similar inhibition of ICa-L, in which the peak amplitude was reduced by 64.4 ± 2.8% and 68.9 ± 5.8%, respectively at 0 mV (p > 0.05). Tramadol, (+)- and (-)-tramadol shifted the steady-state inactivation of ICa-L to more negative membrane potentials. Also, tramadol and (+)-tramadol markedly shifted the time-dependent recovery curve of I(Ca-L) to the right and slowed down the recovery of I(Ca-L) from inactivation. The time constant was increased from 175.6 ± 18.6 to 305.0 ± 32.9 ms (p < 0.01) for tramadol and from 248.1 ± 28.1 ms to 359.0 ± 23.8 ms (p < 0.05) for (+)-tramadol. The agonist of µ-opioid receptor DAMGO had no effect on the I(Ca-L). CONCLUSION: The inhibition of ICa-L induced by tramadol and its enantiomers was unrelated to the activation of opioid receptors and could explain, at least in part, their negative cardiac inotropic effect.


Assuntos
Analgésicos Opioides/farmacologia , Canais de Cálcio Tipo L/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Músculos Papilares/efeitos dos fármacos , Tramadol/farmacologia , Análise de Variância , Animais , Depressão Química , Masculino , Modelos Animais , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Tramadol/análogos & derivados
11.
Arq. bras. cardiol ; 97(4): 324-331, out. 2011. ilus, tab
Artigo em Português | LILACS | ID: lil-606435

RESUMO

FUNDAMENTO: O tramadol é um analgésico de ação central cujo mecanismo de ação envolve a ativação de um receptor opioide. Anteriormente, mostramos que o tramadol e seus enantiômeros apresentavam um efeito inotrópico negativo sobre o músculo papilar no qual o (+)-enantiômero era mais potente que (-)- e (±)-tramadol. OBJETIVO: No presente trabalho, investigamos os efeitos do tramadol e seus enantiômeros na corrente de cálcio tipo L (I Ca-L). MÉTODOS: Os experimentos foram realizados em miócitos ventriculares isolados de ratos Wistar utilizando a técnica de patch-clamp com configuração de célula inteira. RESULTADOS: O tramadol (200 µM) reduziu a amplitude de pico do I Ca-L em potenciais de 0 a +50 mV. Em 0 mV, a I Ca-L foi reduzida em 33,7 ± 7,2 por cento. (+)- e (-)-tramadol (200 µM) produziram uma inibição semelhante da I Ca-L, na qual a amplitude do pico foi reduzida em 64,4 ± 2,8 por cento e 68,9 ± 5,8 por cento, respectivamente a 0 mV (P > 0,05). O tramadol, (+)- e (-)-tramadol mudaram a inativação de estado estacionário de I Ca-L para potenciais de membrana mais negativos. Além disso, tramadol e (+)-tramadol alteraram significativamente a curva de recuperação dependente de tempo da I Ca-L para a direita e reduziram a recuperação de I Ca-L da inativação. A constante de tempo foi aumentada de 175,6 ± 18,6 a 305,0 ± 32,9 ms (P < 0,01) para o tramadol e de 248,1 ± 28,1 ms para 359,0 ± 23,8 ms (P < 0,05) para o (+)-tramadol. O agonista do receptor µ-opioide (DAMGO) não tem nenhum efeito na I Ca-L. CONCLUSÃO: A inibição da I Ca-L induzida por tramadol e seus enantiômeros não teve relação com a ativação de receptores opioides e poderia explicar, pelo menos em parte, seu efeito inotrópico negativo cardíaco.


BACKGROUND: Tramadol is a centrally acting analgesic, whose mechanism of action involves opioid-receptor activation. Previously, we have shown that tramadol and its enantiomers had a negative inotropic effect on the papillary muscle in which the (+)-enantiomer is more potent than (-)- and (±)-tramadol. OBJECTIVE: In this study, we investigated the effects of tramadol and its enantiomers on L-type calcium current (I Ca-L). RESULTS: Tramadol (200 µM) reduced the peak amplitude of I Ca-L at potentials from 0 to +50 mV. At 0 mV, I Ca-L was reduced by 33.7 ± 7.2 percent. (+)- and (-)-tramadol (200 µM) produced a similar inhibition of I Ca-L, in which the peak amplitude was reduced by 64.4 ± 2.8 percent and 68.9 ± 5.8 percent, respectively at 0 mV (p > 0.05). Tramadol, (+)- and (-)-tramadol shifted the steady-state inactivation of I Ca-L to more negative membrane potentials. Also, tramadol and (+)-tramadol markedly shifted the time-dependent recovery curve of I Ca-L to the right and slowed down the recovery of I Ca-L from inactivation. The time constant was increased from 175.6 ± 18.6 to 305.0 ± 32.9 ms (p < 0.01) for tramadol and from 248.1 ± 28.1 ms to 359.0 ± 23.8 ms (p < 0.05) for (+)-tramadol. The agonist of µ-opioid receptor DAMGO had no effect on the I Ca-L. CONCLUSION: The inhibition of I Ca-L induced by tramadol and its enantiomers was unrelated to the activation of opioid receptors and could explain, at least in part, their negative cardiac inotropic effect.


Assuntos
Animais , Masculino , Ratos , Analgésicos Opioides/farmacologia , Canais de Cálcio Tipo L/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Músculos Papilares/efeitos dos fármacos , Tramadol/farmacologia , Análise de Variância , Depressão Química , Modelos Animais , Técnicas de Patch-Clamp , Ratos Wistar , Tramadol/análogos & derivados
12.
Clin Exp Pharmacol Physiol ; 37(12): 1129-33, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20880189

RESUMO

1. The aim of the present study was to investigate the cardiovascular effects of anabolic androgenic steroid (AAS) abuse by comparing the electrocardiographic parameters before and after submaximal exercise between AAS users and non-AAS users. 2. A total of 22 men who regularly engaged in both resistance and aerobic exercise at fitness academies volunteered for the study (control group: n = 11, age 25 ± 4 years; AAS group: n = 11, age 27 ± 5 years). All subjects were submitted to submaximal exercise testing using an Astrand-Rhyming protocol. Heart rate and electrocardiography parameters were measured at rest and at the third minute of the post-exercise recovery time. 3. AAS users presented higher QTc and QTd at rest (10% and 55%, respectively) and at the post-exercise period (17% and 43%, respectively), compared with control subjects. The maximal and minimum QTc interval of the AAS group was significantly prolonged at the post-exercise period (12% and 15%, respectively). The haemodynamic parameters were similar in both groups (P > 0.05). The AAS group showed a lower heart rate recovery at the first minute after the test (P = 0.0001), and a higher exertion score (P < 0.0001) at a lower workload, compared with the control group. 4. Our results show that the QTc interval and dispersion are increased in individuals who abuse AAS, suggesting the presence of ventricular repolarization abnormalities that could potentially increase the risk of cardiac arrhythmias and sudden cardiac death.


Assuntos
Anabolizantes/efeitos adversos , Androgênios/efeitos adversos , Eletrocardiografia/efeitos dos fármacos , Coração/efeitos dos fármacos , Esteroides/efeitos adversos , Adulto , Arritmias Cardíacas/induzido quimicamente , Estudos de Casos e Controles , Morte Súbita Cardíaca/etiologia , Teste de Esforço , Sistema de Condução Cardíaco/efeitos dos fármacos , Sistema de Condução Cardíaco/fisiopatologia , Frequência Cardíaca/efeitos dos fármacos , Humanos , Masculino
13.
Anesth Analg ; 109(5): 1486-92, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19843786

RESUMO

BACKGROUND: Propofol (2,6-diisopropylphenol) has been shown to protect several organs, including the kidneys, from ischemia-reperfusion (I-R)-induced injury. Although propofol affects adenosine triphosphate-sensitive potassium (K(ATP)) channels in nonrenal tissues, it is still not clear by which mechanisms propofol protects renal cells from such damage. In this study, we investigated whether propofol induces renal preconditioning through renal K(ATP) channels. METHODS: A reversible ATP depletion (antimycin A) followed by restoration of substrate supply in LLC-PK1 cells was used as an in vitro model of renal I-R. Cell viability was assessed by dimethylthiazol-diphenyltetrazol bromide and trypan blue dye exclusion test assays. Apoptosis was evaluated by annexin V-fluorescein isothiocyanate staining by flow cytometry and immunofluorescence. Propofol treatments were initiated at various time intervals: 1 or 24 h before ischemia, only during ischemia, or only during reperfusion. To evaluate the mechanisms of propofol protection, specific K(ATP) channel inhibitors or activators were used in some experiments during propofol pretreatment. RESULTS: Propofol attenuated I-R injury on LLC-PK1 cells when present either 1 or 24 h before initiated I-R, and also during the recovery period, but not when added only during ischemia. Propofol pretreatment significantly protected LLC-PK1 from I-R-induced apoptosis. The protective effect of propofol was prevented by glibenclamide (a sarcolemmal ATP-dependent K(+) channel blocker) and decreased by 5-hydroxidecanoic acid (a mitochondrial ATP-dependent K(+) channel blocker), but it was not modified by diazoxide (a selective opener of ATP-sensitive K(+) channel). CONCLUSION: Propofol protected cells against apoptosis induced by I-R. This protection was probably due to a preconditioning effect of propofol and was, at least in part, mediated by K(ATP) channels.


Assuntos
Canais KATP/agonistas , Nefropatias/prevenção & controle , Rim/efeitos dos fármacos , Propofol/farmacologia , Substâncias Protetoras/farmacologia , Traumatismo por Reperfusão/prevenção & controle , Trifosfato de Adenosina/deficiência , Animais , Antimicina A/farmacologia , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citoproteção , Ácidos Decanoicos/farmacologia , Diazóxido/farmacologia , Glibureto/farmacologia , Hidroxiácidos/farmacologia , Canais KATP/metabolismo , Rim/metabolismo , Rim/patologia , Nefropatias/metabolismo , Nefropatias/patologia , Células LLC-PK1 , Necrose , Bloqueadores dos Canais de Potássio/farmacologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Suínos , Fatores de Tempo
14.
Med Sci Sports Exerc ; 38(2): 256-61, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16531893

RESUMO

PURPOSE: The administration of anabolic-androgenic steroids (AAS) to improve athletic performance has increased notably during the past three decades, even among nonathletes. Thyroid function is affected by AAS use in humans, although the mechanisms of the effects of AAS are unclear. We evaluated the effects on thyroid function of supraphysiologic doses of nandrolone decanoate (DECA), which is one of the most anabolic-androgenic steroids (AAS) used. METHODS: Male Wistar rats were treated with vehicle or 1 mg.100 g(-1) body weight (b.w.) of DECA, once a week for 8 wk, intramuscularly. We analyzed thyroperoxidase (TPO) activity, type 1 iodothyronine deiodinase (D1) activities in liver, kidney, pituitary, and thyroid, and serum levels of total T3, total T4, free T4, and TSH. Parametric and nonparametric t-tests were employed for statistical analyses. RESULTS: Treated animals showed a significant increase in the weight of kidneys and heart, and a decrease in the relative testis weight. Retroperitoneal adipose tissue was only slightly decreased. DECA treatment induced a significant increase in the absolute and relative thyroid gland weight. The concentrations of total serum T3, free T4, and TSH decreased significantly with treatment, but total serum T4 levels were unchanged. Thyroperoxidase activity was unaltered, whereas liver and kidney D1 activities were significantly increased, but pituitary and thyroid D1 did not change. CONCLUSION: Our data indicate that DECA exerts direct actions on the thyroid gland and in the peripheral metabolism of thyroid hormones and might lead to thyroid dysfunction.


Assuntos
Nandrolona/análogos & derivados , Glândula Tireoide/efeitos dos fármacos , Animais , Peso Corporal , Injeções Intramusculares , Masculino , Nandrolona/administração & dosagem , Nandrolona/farmacologia , Decanoato de Nandrolona , Radioimunoensaio , Ratos , Ratos Wistar , Estatísticas não Paramétricas , Testes de Função Tireóidea
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...