Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36232474

RESUMO

Aedes aegypti L. (Diptera: Culicidae) is an important transmitter of diseases in tropical countries and controlling the larvae of this mosquito helps to reduce cases of diseases such as dengue, zika and chikungunya. Thus, the present study aimed to evaluate the larvicidal potential of the essential oil (EO) of Ocimum basilicum var. minimum (L.) Alef. The EO was extracted by stem distillation and the chemical composition was characterized by gas chromatography coupled with mass spectrometry (GC/MS and GC-FID). The larvicidal activity of EO was evaluated against third instar Ae. aegypti following World Health Organization (WHO) standard protocol and the interaction of the major compounds with the acetylcholinesterase (AChE) was evaluated by molecular docking. The predominant class was oxygenated monoterpenes with a concentration of 81.69% and the major compounds were limonene (9.5%), 1,8-cineole (14.23%), linalool (24.51%) and methyl chavicol (37.41%). The O. basilicum var. minimum EO showed unprecedented activity against third instar Ae. aegypti larvae at a dose-dependent relationship with LC50 of 69.91 (µg/mL) and LC90 of 200.62 (µg/mL), and the major compounds were able to interact with AChE in the Molecular Docking assay, indicating an ecological alternative for mosquito larvae control.


Assuntos
Aedes , Inseticidas , Ocimum basilicum , Óleos Voláteis , Infecção por Zika virus , Zika virus , Acetilcolinesterase , Animais , Eucaliptol , Cromatografia Gasosa-Espectrometria de Massas , Inseticidas/química , Inseticidas/farmacologia , Larva , Limoneno , Simulação de Acoplamento Molecular , Monoterpenos , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Compostos Fitoquímicos/farmacologia
2.
Antioxidants (Basel) ; 11(10)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36290799

RESUMO

The essential oils (EOs) of Myrciaria floribunda (Mflo) and Myrcia sylvatica (Msyl) (Myrtaceae) were obtained by hydrodistillation. The analysis of volatile constituents was performed by GC/MS. Preliminary toxicity was assessed on Artemia salina Leach. The antioxidant capacity was measured by the ABTS•+ and DPPH• radical inhibitory activities. The results indicate that the Mflo EO had the highest yield (1.02%), and its chemical profile was characterized by high levels of hydrocarbon (65.83%) and oxygenated (25.74%) monoterpenes, especially 1,8-cineole (23.30%), terpinolene (22.23%) and α-phellandrene (22.19%). Regarding the Msyl EO, only hydrocarbon (51.60%) and oxygenated (46.52%) sesquiterpenes were identified in the sample, with (Z)-α-trans-bergamotene (24.57%), α-sinensal (13.44%), and (Z)-α-bisabolene (8.33%) at higher levels. The EO of Mflo exhibited moderate toxicity against A. salina (LC50 = 82.96 ± 5.20 µg.mL−1), while the EO of Msyl was classified as highly toxic (LC50 = 2.74 ± 0.50 µg.mL−1). In addition, relative to Trolox, the EOs of Mflo and Msyl showed significant inhibitory effects (p < 0.0001) against the DPPH• radical. This study contributes to the expansion of chemical and biological knowledge on the EOs of Myrtaceae species from the Amazon region.

3.
Antioxidants (Basel) ; 11(9)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36139777

RESUMO

The essential oils (EOs) of Duguetia echinophora, D. riparia, Xylopia emarginata and X. frutescens (Annonaceae) were obtained by hydrodistillation and the chemical composition was analyzed by GC-MS. An antioxidant assay using the ABTS and DPPH radicals scavenging method and cytotoxic assays against Artemia salina were also performed. We evaluated the interaction of the major compounds of the most toxic EO (X. emarginata) with the binding pocket of the enzyme Acetylcholinesterase, a molecular target related to toxicity in models of Artemia salina. The chemical composition of the EO of D. echinophora was characterized by ß-phellandrene (39.12%), sabinene (17.08%) and terpinolene (11.17%). Spathulenol (22.22%), caryophyllene oxide (12.21%), humulene epoxide II (11.86%) and allo-aromadendrene epoxide (10.20%) were the major constituents of the EO from D. riparia. Spathulenol (5.65%) and caryophyllene oxide (5.63%) were the major compounds of the EO from X. emarginata. The EO of X. frutescens was characterized by α-pinene (20.84%) and byciclogermacrene (7.85%). The results of the radical scavenger DPPH assays ranged from 15.87 to 69.38% and the highest percentage of inhibition was observed for the EO of X. emarginata, while for ABTS radical scavenging, the antioxidant capacity of EOs varied from 14.61 to 63.67%, and the highest percentage of inhibition was observed for the EO of X. frutescens. The EOs obtained from D. echinophora, X. emarginata and X. frutescens showed high toxicity, while the EO of D. riparia was non-toxic. Because the EO of X. emarginata is the most toxic, we evaluated how its major constituents were able to interact with the Acetylcholinesterase enzyme. The docking results show that the compounds are able to bind to the binding pocket through non-covalent interactions with the residues of the binding pocket. The species X. emarginata and X. frutescens are the most promising sources of antioxidant compounds; in addition, the results obtained for preliminary cytotoxicity of the EOs of these species may also indicate a potential biological activity.

4.
J Food Sci ; 87(9): 4148-4161, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35986623

RESUMO

The use of yeasts as starter cultures is a promising alternative to produce fermented cacao with particular characteristics regarding the quality of aromas and physical and chemical characteristics that are accepted by the chocolate market. This study aimed to evaluate the physical and chemical transformations of cocoa beans during fermentation after inoculation with starter cultures of yeast species Pichia manshurica (PF) and Saccharomyces cerevisiae (SF), both previously isolated in cocoa bean fermentations in the Brazilian Amazon, in comparison with a fermentation without the inoculum addition (CF). During the fermentation time, which was carried out on a cocoa farm in Igarapé-Miri (Amazon biome, Pará, Brazil), the contents of phenolic compounds (catechin and epicatechin), sugars (glucose, fructose, and sucrose), acetic acid, and ethanol were monitored by HPLC, and the volatile compounds profiles were assessed by GC-MS. The starter culture of P. manshurica was able to produce fermented cocoa beans with highly desirable characteristics for the production of good quality chocolate: low acidity, a broad variety of aromatic compounds with floral, fruity, and sweet characteristics, in addition to showing high contents of catechin and epicatechin, which are known by their antioxidant properties. Therefore, the use of starter cultures with species of yeasts isolated in the Amazon region, during cocoa fermentation, is an alternative to obtain fermented seeds with high quality favoring the commercial agreements in the chocolate market by cocoa producers. PRACTICAL APPLICATION: The addition of starter cultures was able to produce cocoa beans with good quality. Yeasts species isolated and identified in Amazonian cocoa fermentation can improve the profiles of aromatic compounds. Catechin and epicatechin contents are higher in inoculated cocoa beans fermentations.


Assuntos
Cacau , Catequina , Antioxidantes , Cacau/química , Ecossistema , Etanol , Fermentação , Frutose , Glucose , Pichia , Saccharomyces cerevisiae , Sacarose , Açúcares
5.
Molecules ; 27(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35889245

RESUMO

Essential oils are biosynthesized in the secondary metabolism of plants, and in their chemical composition, they can be identified different classes of compounds with potential antioxidant and biological applications. Over the years in the Amazon, several species of aromatic plants were discovered and used in traditional medicine. The literature has shown that essential oils extracted from amazon species have several biological activities, such as antioxidant, antibacterial, antifungal, cytotoxic, and antiprotozoal activities. These activities are related to the diversified chemical composition found in essential oils that, by synergism, favors its pharmacological action. In light of this vital importance, this study aimed at performing a review of the literature with particular emphasis on the chemical composition and biological activities in studies conducted with species collected in the Amazon, taking into consideration in particular the last 10 years of collection and research.


Assuntos
Óleos Voláteis , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Brasil , Óleos Voláteis/química , Óleos Voláteis/farmacologia
6.
Molecules ; 27(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35897853

RESUMO

The essential oil (EO) of Calycolpus goetheanus (Myrtaceae) specimens (A, B, and C) were obtained through hydrodistillation. The analysis of the chemical composition of the EOs was by gas chromatography coupled with mass spectrometry CG-MS, and gas chromatography coupled with a flame ionization detector CG-FID. The phytotoxic activity of those EOs was evaluated against two weed species from common pasture areas in the Amazon region: Mimosa pudica L. and Senna obtusifolia (L.) The antioxidant capacity of the EOs was determined by (DPPH•) and (ABTS•+). Using molecular docking, we evaluated the interaction mode of the major EO compounds with the molecular binding protein 4-hydroxyphenylpyruvate dioxygenase (HPPD). The EO of specimen A was characterized by ß-eudesmol (22.83%), (E)-caryophyllene (14.61%), and γ-eudesmol (13.87%), while compounds 1,8-cineole (8.64%), (E)-caryophyllene (5.86%), δ-cadinene (5.78%), and palustrol (4.97%) characterize the chemical profile of specimen B's EOs, and specimen C had α-cadinol (9.03%), δ-cadinene (8.01%), and (E)-caryophyllene (6.74%) as the majority. The phytotoxic potential of the EOs was observed in the receptor species M. pudica with percentages of inhibition of 30%, and 33.33% for specimens B and C, respectively. The EOs' antioxidant in DPPH• was 0.79 ± 0.08 and 0.83 ± 0.02 mM for specimens A and B, respectively. In the TEAC, was 0.07 ± 0.02 mM for specimen A and 0.12 ± 0.06 mM for specimen B. In the results of the in silico study, we observed that the van der Waals and hydrophobic interactions of the alkyl and pi-alkyl types were the main interactions responsible for the formation of the receptor-ligand complex.


Assuntos
Herbicidas , Myrtaceae , Óleos Voláteis , Antioxidantes/química , Antioxidantes/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Herbicidas/farmacologia , Simulação de Acoplamento Molecular , Myrtaceae/química , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia
7.
Int J Mol Sci ; 22(22)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34830022

RESUMO

The present work involves a systematic review of the chemical composition and biological effects of essential oils from the Annonaceae species collected in Brazil from 2011 to 2021. Annonaceae is one of the most important botanical families in Brazil, as some species have economic value in the market as local and international fruit. In addition, the species have useful applications in several areas-for instance, as raw materials for use in cosmetics and perfumery and as medicinal plants. In folk medicine, species such as Annona glabra L. and Xylopia sericea A. St.-Hil. are used to treat diseases such as rheumatism and malaria. The species of Annonaceae are an important source of essential oils and are rich in compounds belonging to the classes of mono and sesquiterpenes; of these compounds, α-pinene, ß-pinene, limonene, (E)-caryophyllene, bicyclogermacrene, caryophyllene oxide, germacrene D, spathulenol, and ß-elemene are the most abundant. The antimicrobial, anti-inflammatory, antileishmania, antioxidant, antiproliferative, cytotoxic, larvicidal, trypanocidal, and antimalarial activities of essential oils from the Annonaceae species in Brazil have been described in previous research, with the most studies on this topic being related to their antiproliferative or cytotoxic activities. In some studies, it was observed that the biological activity reported for these essential oils was superior to that of drugs available on the market, as is the case of the essential oil of the species Guatteria punctata (Aubl.) R. A. Howard., which showed a trypanocidal effect that was 34 times stronger than that of the reference drug benznidazol.


Assuntos
Annonaceae/química , Óleos Voláteis/química , Compostos Fitoquímicos/química , Antibacterianos/química , Antibacterianos/uso terapêutico , Brasil , Humanos , Óleos Voláteis/uso terapêutico , Folhas de Planta/química , Sesquiterpenos Policíclicos/química , Sesquiterpenos/química , Sesquiterpenos de Germacrano/química
8.
Molecules ; 26(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206169

RESUMO

In addition to the vast diversity of fauna and flora, the Brazilian Amazon has different climatic periods characterized by periods with greater and lesser rainfall. The main objective of this research was to verify the influence of climatic seasons in the Brazilian Amazon (northeast of Pará state) concerning the aromatic and bioactive profiles of fermented and dried cocoa seeds. About 200 kg of seeds was fermented using specific protocols of local producers. Physicochemical analyzes (total titratable acidity, pH, total phenolic compounds, quantification of monomeric phenolics and methylxanthines) and volatile compounds by GC-MS were carried out. We observed that: in the summer, the highest levels of aldehydes were identified, such as benzaldehyde (6.34%) and phenylacetaldehyde (36.73%), related to the fermented cocoa and honey aromas, respectively; and a total of 27.89% of this same class was identified during winter. There were significant differences (p ≤ 0.05, Tukey test) in the profile of bioactive compounds (catechin, epicatechin, caffeine, and theobromine), being higher in fermented almonds in winter. This study indicates that the climatic seasons in the Amazon affect the aromatic and bioactive profiles and could produce a new identity standard (summer and winter Amazon) for the cocoa almonds and their products.


Assuntos
Cacau , Ecossistema , Flavonoides , Fenóis , Estações do Ano , Sementes , Cacau/química , Cacau/metabolismo , Flavonoides/química , Flavonoides/metabolismo , Odorantes , Fenóis/química , Fenóis/metabolismo , Sementes/química , Sementes/metabolismo
9.
Molecules ; 26(11)2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072598

RESUMO

Essential oils (EOs) were extracted from Eugenia patrisii, E. punicifolia, and Myrcia tomentosa, specimens A and B, using hydrodistillation. Gas chromatography coupled with mass spectrometry (GC/MS) was used to identify the volatile constituents present, and the antioxidant capacity of EOs was determined using diphenylpicryl-hydrazyl (DPPH) and trolox equivalent antioxidant capacity (TEAC) assays. For E. patrisii, germacrene D (20.03%), bicyclogermacrene (11.82%), and (E)-caryophyllene (11.04%) were identified as the major constituents of the EOs extracted from specimen A, whereas specimen B primarily comprised γ-elemene (25.89%), germacrene B (8.11%), and (E)-caryophyllene (10.76%). The EOs of E. punicifolia specimen A contained ß-Elemene (25.12%), (E)-caryophyllene (13.11%), and bicyclogermacrene (9.88%), while specimen B was composed of (E)-caryophyllene (11.47%), bicyclogermacrene (5.86%), ß-pinene (5.86%), and γ-muurolene (5.55%). The specimen A of M. tomentosa was characterized by γ-elemene (12.52%), germacrene D (11.45%), and (E)-caryophyllene (10.22%), while specimen B contained spathulenol (40.70%), α-zingiberene (9.58%), and γ-elemene (6.89%). Additionally, the chemical composition of the EOs was qualitatively and quantitatively affected by the collection period. Furthermore, the EOs of the studied specimens, especially specimen A of E. punicifolia, showed a greater antioxidant activity in DPPH rather than TEAC, as represented by a significantly high inhibition percentage (408.0%).


Assuntos
Antioxidantes/farmacologia , Eugenia/metabolismo , Myrtaceae/metabolismo , Óleos Voláteis/análise , Extratos Vegetais/farmacologia , Folhas de Planta/metabolismo , Antioxidantes/química , Compostos de Bifenilo/química , Técnicas de Química Analítica/métodos , Cromanos/química , Cromatografia Gasosa-Espectrometria de Massas , Óleos Voláteis/química , Picratos/química , Sesquiterpenos Policíclicos/análise , Sesquiterpenos/análise , Sesquiterpenos de Germacrano/análise
10.
Molecules ; 26(9)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946153

RESUMO

Leaves of Lippia thymoides (Verbenaceae) were dried in an oven at 40, 50 and 60 °C and the kinetic of drying and the influence of the drying process on the chemical composition, yield, and DPPH radical scavenging activity of the obtained essential oils were evaluated. The composition of the essential oils was determined with gas chromatography-mass spectrometry and gas chromatography-flame ionization detection analyses. The influence of drying on the chemical composition of the essential oils of L. thymoides was evaluated by multivariate analysis, and their antioxidant activity was investigated via the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. The Midilli model was the most appropriate to describe the behavior of drying kinetic data of L. thymoides leaves. Thymol was the major compound for all analyzed conditions; the maximum content was obtained from fresh leaves (62.78 ± 0.63%). The essential oils showed DPPH radical scavenging activity with an average of 73.10 ± 12.08%, and the fresh leaves showed higher inhibition (89.97 ± 0.31%). This is the first study to evaluate the influence of drying on the chemical composition and antioxidant activity of L. thymoides essential oils rich in thymol.


Assuntos
Antioxidantes/química , Lippia/química , Óleos Voláteis/química , Óleos de Plantas/química , Timol/química , Antioxidantes/farmacologia , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Óleos Voláteis/farmacologia , Folhas de Planta/química , Óleos de Plantas/farmacologia , Temperatura , Timol/farmacologia
11.
Molecules ; 26(2)2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33440885

RESUMO

This study aimed to identify the volatile compounds in the fermented and dried cocoa beans conducted with three distinct inoculants of yeast species due to their high fermentative capacity: Saccharomyces cerevisiae, Pichia kudriavzevii, the mixture in equal proportions 1:1 of both species, and a control fermentation (with no inoculum application). Three starter cultures of yeasts, previously isolated and identified in cocoa fermentation in the municipality of Tomé-Açu, Pará state, Brazil. The seeds with pulp were removed manually and placed in wooden boxes for the fermentation process that lasted from 6 to 7 days. On the last day of fermentation, the almonds were packaged properly and placed to dry (36 °C), followed by preparation for the analysis of volatile compounds by GC-MS technique. In addition to the control fermentation, a high capacity for the formation of desirable compounds in chocolate by the inoculants with P. kudriavzevii was observed, which was confirmed through multivariate analyses, classifying these almonds with the highest content of aldehydes, esters, ketones and alcohols and low concentration of off-flavours. We conclude that the addition of mixed culture starter can be an excellent alternative for cocoa producers, suggesting obtaining cocoa beans with desirable characteristics for chocolate production, as well as creating a product identity for the producing region.


Assuntos
Cacau/metabolismo , Chocolate/análise , Fermentação , Pichia/metabolismo , Saccharomyces cerevisiae/metabolismo , Compostos Orgânicos Voláteis/análise , Indústria Alimentícia , Sementes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...