Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38611171

RESUMO

The mechanical and ballistic performance of epoxy matrix composites reinforced with 10, 20, and 30 vol.% of babassu fibers was investigated for the first time. The tests included tension, impact, and ballistic testing with 0.22 caliber ammunition. The results showed an improvement in tensile strength, elastic modulus, and elongation with the addition of babassu fiber, and the 30 vol.% composite stood out. Scanning electron microscopy analysis revealed the fracture modes of the composites, highlighting brittle fractures in the epoxy matrix, as well as other mechanisms such as fiber breakage and delamination in the fiber composites. Izod impact tests also showed improvement with increasing babassu fiber content. In ballistic tests, there was an increase in absorbed energy. All composites surpassed plain epoxy by over 3.5 times in ballistic energy absorption, underscoring the potential of babassu fiber in engineering and defense applications.

2.
Polymers (Basel) ; 15(19)2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37835912

RESUMO

To complement previous results, an analysis of the chemical and morphological properties of babassu fibers (Attalea speciosa Mart. ex Spreng.) was conducted in order to evaluate their potential as reinforcements in the production of composites with epoxy matrix. The diameter distribution was analyzed in a sample of one hundred fibers, allowing the verification of its variation. The determination of the chemical properties involved experimental analyses of the constituent index and X-ray diffraction. The diffractogram was used to calculate the crystallinity index and the microfibril angle, which are crucial parameters that indicate the consistency of the mechanical properties of babassu fibers and the feasibility of their use in composites. The results revealed that babassu fiber has a chemical composition, with contents of 28.53% lignin, 32.34% hemicellulose, and 37.97% cellulose. In addition, it showed a high crystallinity index of 81.06% and a microfibril angle of 7.67°. These characteristics, together with previous results, indicate that babassu fibers have favorable chemical and morphological properties to be used as reinforcements in composites, highlighting its potential as an important material for applications in technology areas.

3.
Polymers (Basel) ; 15(17)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37688176

RESUMO

Seeking to improve personal armor equipment by providing mobility and resistance to penetration, this research aimed to explore the potential of sustainable materials in order to assess their ability in ballistic applications. Titica vine fibers (TVFs) extracted from aerial roots of Heteropsis flexuosa from the Amazon region were incorporated at 10, 20, 30, and 40 vol% into an epoxy matrix for applications in ballistic multilayered armor systems (MASs) and stand-alone tests for personal protection against high-velocity 7.62 mm ammunition. The back-face signature (BFS) depth measured for composites with 20 and 40 vol% TVFs used as an intermediate layer in MASs was 25.6 and 32.5 mm, respectively, and below the maximum limit of 44 mm set by the international standard. Fracture mechanisms found by scanning electron microscopy (SEM) attested the relevance of increasing the fiber content for applications in MASs. The results of stand-alone tests showed that the control (0 vol%) and samples with 20 vol% TVFs absorbed the highest impact energy (Eabs) (212-176 J), and consequently displayed limit velocity (VL) values (213-194 m/s), when compared with 40 vol% fiber composites. However, the macroscopic evaluation found that, referring to the control samples, the plain epoxy shattered completely. In addition, for 10 and 20 vol% TVFs, the composites were fragmented or exhibited delamination fractures, which compromised their physical integrity. On the other hand, composites with 30 and 40 vol% TVFs, whose Eabs and VL varied between 166-130 J and 189-167 m/s, respectively, showed the best physical stability. The SEM images indicated that for composites with 10 and 20 vol% TVFs, the fracture mode was predominantly brittle due to the greater participation of the epoxy resin and the discrete action of the fibers, while for composites with 30 and 40 vol% TVFs, there was activation of more complex mechanisms such as pullout, shearing, and fiber rupture. These results indicate that the TVF composite has great potential for use in bulletproof vests.

4.
Polymers (Basel) ; 15(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37571110

RESUMO

Hybrid composites are expanding applications in cutting-edge technology industries, which need materials capable of meeting combined properties in order to guarantee high performance and cost-effectiveness. This original article aimed for the first time to investigate the hybrid laminated composite thermal behavior, made of two types of fibers: synthetic Twaron® fabric and natural curaua non-woven mat, reinforcing epoxy matrix. The composite processing was based on the ballistic helmets methodology from the North American Personal Armor System for Ground Troops, currently used by the Brazilian Army, aiming at reduced costs, total weight, and environmental impact associated with the material without compromising ballistic performance. Thermal properties of plain epoxy, aramid fabric, and curaua mat were evaluated, as well as the other five configurations of hybrid laminated composites. These properties were compared using thermogravimetric analysis (TGA) with its derivative (DTG), differential thermal analysis (DTA), and thermomechanical analysis (TMA). The results showed that the plain epoxy begins thermal degradation at 208 °C while the curaua mat at 231 °C and the aramid fabric at 477 °C. The hybrid laminated composites curves showed two or three inflections in terms of mass loss. The only sample that underwent thermal expansion was the five-aramid and three-curaua layers composite. In the third analyzed temperature interval, related to the glass transition temperature of the composites, there was, in general, an increasing thermal stability behavior.

5.
Polymers (Basel) ; 15(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37571114

RESUMO

The search for unexplored natural materials as an alternative to synthetic components has driven the development of novel polymeric composites reinforced with environmentally-friendly materials. Natural lignocellulosic fibers (NLFs) have been highlighted as potential reinforcement in composite materials for engineering applications. In this work, a less known Amazonian fiber, the ubim fiber (Geonoma baculifera), is investigated as a possible reinforcement in epoxy composites and was, for the first time, thermally characterized by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Additionally, its chemical structure was elucidated by Fourier transform infrared spectroscopy (FTIR). Ballistic tests were also performed against the threat of a 7.62 mm high-speed lead projectile. The results were statistically analyzed by the Weibull statistical analysis method. FTIR analysis showed the functional groups normally found for NLFs highly rich in cellulose, hemicellulose, and lignin. The TGA/DTG results showed the onset of thermal degradation for the composites (325~335 °C), which represents better thermal stability than isolated ubim fiber (259 °C), but slightly lower than that of pure epoxy (352 °C). The DSC results of the composites indicate endothermic peaks between 54 and 56 °C, and for the ubim fibers, at 71 °C. Ballistic tests revealed higher energy absorption in composites with lower fiber content due to the more intense action of the brittle fracture mechanisms of the epoxy resin, which tended to dissipate more energy. These failure mechanisms revealed the presence of river marks, cracks, and broken fibers with a detachment interface. These results may contribute to the production of ubim fiber-reinforced composites in engineering applications, such as ballistic armors.

6.
Polymers (Basel) ; 15(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37299259

RESUMO

Natural lignocellulosic fibers (NLFs) have been used as a reinforcement for polymer matrix composites in the past couple of decades. Their biodegradability, renewability, and abundance make them appealing for sustainable materials. However, synthetic fibers surpass NLFs in mechanical and thermal properties. Combining these fibers as a hybrid reinforcement in polymeric materials shows promise for multifunctional materials and structures. Functionalizing these composites with graphene-based materials could lead to superior properties. This research optimized the tensile and impact resistance of a jute/aramid/HDPE hybrid nanocomposite by the addition of graphene nanoplatelets (GNP). The hybrid structure with 10 jute/10 aramid layers and 0.10 wt.% GNP exhibited a 2433% increase in mechanical toughness, a 591% increase in tensile strength, and a 462% reduction in ductility compared to neat jute/HDPE composites. A SEM analysis revealed the influence of GNP nano-functionalization on the failure mechanisms of these hybrid nanocomposites.

7.
Polymers (Basel) ; 14(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36080703

RESUMO

Several industry sectors have sought to develop materials that combine lightness, strength and cost-effectiveness. Natural lignocellulosic natural fibers have demonstrated to be efficient in replacing synthetic fibers, owing to several advantages such as costs 50% lower than that of synthetic fibers and promising mechanical specific properties. Polymeric matrix composites that use kenaf fibers as reinforcement have shown strength increases of over 600%. This work aims to evaluate the performance of epoxy matrix composites reinforced with kenaf fibers, by means of dynamic-mechanical analysis (DMA) and ballistic test. Through DMA, it was possible to obtain the curves of storage modulus (E'), loss modulus (E″) and damping factor, Tan δ, of the composites. The variation of E' displayed an increase from 1540 MPa for the plain epoxy to 6550 MPa for the 30 vol.% kenaf fiber composites, which evidences the increase in viscoelastic stiffness of the composite. The increase in kenaf fiber content induced greater internal friction, resulting in superior E″. The Tan δ was considerably reduced with increasing reinforcement fraction, indicating better interfacial adhesion between the fiber and the matrix. Ballistic tests against 0.22 caliber ammunition revealed similar performance in terms of both residual and limit velocities for plain epoxy and 30 vol.% kenaf fiber composites. These results confirm the use of kenaf fiber as a promising reinforcement of polymer composites for automotive parts and encourage its possible application as a ballistic armor component.

8.
Polymers (Basel) ; 14(18)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36145894

RESUMO

Curaua, as a leaf-based natural fiber, appears to be a promising component with aramid fabric reinforcement of hybrid composites. This work deals with the investigation of flexural, impact and elastic properties of non-woven curaua-aramid fabric hybrid epoxy composites. Five configurations of hybrid composites in a curaua non-woven mat with an increasing quantity of layers, up to four layers, were laminated through the conventional hand lay-up method. The proposed configurations were idealized with at least 60 wt% reinforcement in the non-alternating configuration. As a result, it was observed that the flexural strength decreased by 33% and the flexural modulus by 56%. In addition, the energy absorbed in the Charpy impact also decreased in the same proportion as the replaced amount of aramid. Through the impulse excitation technique, it was possible observe that the replacement of the aramid layers with the curaua layers resulted in decreased elastic properties. However, reduction maps revealed proportional advantages in hybridizing the curaua with the aramid fiber. Moreover, the hybrid composite produced an almost continuous and homogeneous material, reducing the possibility of delamination and transverse deformation, which revealed an impact-resistant performance.

9.
Polymers (Basel) ; 14(16)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36015506

RESUMO

Replacing synthetic fibers with natural ones as reinforcement in polymeric composites is an alternative to contribute to sustainability. Pineapple leaf fibers (PALF) have specific mechanical properties that allow their use as reinforcement. Further, graphene oxide (GO) has aroused interest due to its distinctive properties that allow the improvement of fiber/matrix interfacial adhesion. Thus, this work aimed to evaluate the ballistic performance and energy absorption properties of PALF-reinforced composites, presenting different conditions (i.e., GO-functionalization, and variation of fibers volume fraction and arrangement) through residual velocity and Izod impact tests. ANOVA was used to verify the variability and reliability of the results. SEM was employed to visualize the failure mechanisms. The Izod impact results revealed a significant increase in the absorbed energy with the increment of fiber volume fraction for the unidirectional configuration. The ballistic results indicated that the bidirectional arrangement was responsible for better physical integrity after the projectile impact. Furthermore, bidirectional samples containing 30 vol.% of GO non-functionalized fibers in a GO-reinforced matrix showed the best results, indicating its possible application as a second layer in multilayered armor systems.

10.
Polymers (Basel) ; 14(16)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36015605

RESUMO

Natural lignocellulosic fibers (NFLs) possess several economic, technical, environmental and social advantages, making them an ideal alternative to synthetic fibers in composite materials. Caranan fiber is an NFL extract from the leafstalk of the Mauritiella armata palm tree, endemic to South America. The present work investigates the addition of 10, 20 and 30 vol% caranan fiber in epoxy resin, regarding the properties associated with Izod notch tough and ballistic performance. Following ASTM D256 standards, ten impact specimens for each fiber reinforcement condition (vol%) were investigated. For the ballistic test, a composite plate with 30 vol%, which has the best result, was tested with ten shots, using 0.22 ammunition to verify the energy absorption. The results showed that when compared to the average values obtained for the epoxy resin, the effect of incorporating 30 vol% caranan fibers as reinforcement in composites was evident in the Izod impact test, producing an increase of around 640% in absorption energy. Absorbed ballistic energy and velocity limit results provided values similar to those already reported in the literature: around 56 J and 186 J, respectively. All results obtained were ANOVA statistically analyzed based on a confidence level of 95%. Tukey's test revealed, as expected, that the best performance among the studied impact resistance was 30 vol%, reaching the highest values of energy absorption. For ballistic performance, the Weibull analysis showed a high R2 correlation value above 0.9, confirming the reliability of the tested samples. These results illustrate the possibilities of caranan fiber to be used as a reinforcement for epoxy composites and its promising application in ballistic armor.

11.
Polymers (Basel) ; 14(13)2022 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-35808633

RESUMO

A typical ballistic protection helmet for ground military troops has an inside laminate polymer composite reinforced with 19 layers of the aramid, which are neither recyclable or biodegradable and are relatively expensive. The hybridization of synthetic aramid with a natural lignocellulosic fiber (NLF) can provide a lower cost and desirable sustainability to the helmet. In the present work, the curaua fiber, one of the strongest NLFs, is, for the first time, considered in non-woven mat layers to partially replace the aramid woven fabric layers. To investigate the possible advantage of this replacement, the tensile and impact properties of aramid/curaua hybrid laminated composites intended for ballistic helmets, in which up to four layers of curaua were substituted for the aramid, were evaluated. Tensile strength, toughness, and elastic modulus decreased with the replacement of the aramid while the deformation of rupture was improved for the replacement of nine aramid layers by two layers of curaua. Preliminary impact tests corroborate the decreasing tendency found in the tensile properties with the replacement of the aramid by curaua. Novel proposed Reduction Maps showed that, except for the replacement of four aramid layers by one layer of curaua, the decrease percentage of any tensile property value was lower than the corresponding volume percentage of replaced aramid, which revealed advantageous hybridization for the replacement of nine or more aramid layers.

12.
Polymers (Basel) ; 14(9)2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35567028

RESUMO

Graphene oxide (GO) functionalized curaua fiber (CF) has been shown to improve the mechanical properties and ballistic performance of epoxy matrix (EM) nanocomposites with 30 vol% fiber. However, the possibility of further improvement in the property and performance of nanocomposites with a greater percentage of GO functionalized CF is still a challenging endeavor. In the present work, a novel epoxy composite reinforced with 40 vol% CF coated with 0.1 wt% GO (40GOCF/EM), was subjected to Izod and ballistic impact tests as well as corresponding fractographic analysis in comparison with a GO-free composite (40CF/EM). One important achievement of this work was to determine the characteristics of the GO by means of FE-SEM and TEM. A zeta potential of -21.46 mV disclosed a relatively low stability of the applied GO, which was attributed to more multilayered structures rather than mono- or few-layer flakes. FE-SEM images revealed GO deposition, with thickness around 30 nm, onto the CF. Izod impact-absorbed energy of 813 J/m for the 40GOCF/EM was not only higher than that of 620 J/m for the 40CF/EM but also higher than other values reported for fiber composites in the literature. The GO-functionalized nanocomposite was more optimized for ballistic application against a 7.62 mm projectile, with a lower depth of penetration (24.80 mm) as compared with the 30 vol% GO-functionalized CF/epoxy nanocomposite previously reported (27.43 mm). Fractographic analysis identified five main events in the ballistic-tested 40GOCF/EM composed of multilayered armor: CF rupture, epoxy matrix rupture, CF/matrix delamination, CF fibril split, and capture of ceramic fragments by the CF. Microcracks were associated with the morphological aspects of the CF surface. A brief cost-effective analysis confirmed that 40GOCF/EM may be one of the most promising materials for personal multilayered ballistic armor.

13.
Polymers (Basel) ; 13(23)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34883583

RESUMO

Titica vine (Heteropsis flexuosa) is a typical plant of the Amazon region commonly used for making baskets, bags, brooms and furniture, owing to its stiff fibers. In spite of its interesting properties, there is so far no reported information regarding the use of titica vine fibers (TVFs) in engineering composite materials. In this work, the TVF and its epoxy composites were for the first time physically, thermally and mechanically characterized. Additionally, the effect of two kinds of chemical treatments, one with sodium carbonate and one with calcium lignosulfonate, as well as different volume fractions, 10, 20, 30 and 40 vol%, of TVF-reinforced composites were assessed for corresponding basic properties. The thermogravimetric results of the composites reveal enhanced thermal stability for higher TVF content. In addition, the composite incorporated with 40 vol% of TVFs treated with sodium carbonate absorbed 19% more water than the composites with untreated fibers. By contrast, the calcium lignosulfonate treatment decreased water absorption by 8%. The Charpy and Izod impact tests showed that the composites, incorporated with the highest investigated volume fraction (40 vol%) of TVF, significantly increased the absorbed energy by 18% and 28%, respectively, compared to neat epoxy. ANOVA and Tukey statistical analyses displayed no direct influence of the chemical treatments on the energy absorption of the composites for either impact tests. SEM images revealed the main fracture mechanisms responsible for the performance of TVF composites.

14.
Polymers (Basel) ; 13(16)2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34451267

RESUMO

Polymer composites reinforced with natural fabric have recently been investigated as possible ballistic armor for personal protection against different levels of ammunition. In particular, fabric made of fique fibers, which is extracted from the leaves of the Furcraea andina, was applied as reinforcement for polymer composites used in a multilayered armor system (MAS). The superior performance of the fique fabric composites as a second MAS layer motivated this brief report on the determination of the absorbed energy and capability to limit velocity in the stand-alone ballistic tests. The single plates of epoxy composites, which were reinforced with up to 50 vol% of fique fabric, were ballistic tested as targets against 7.62 mm high-speed, ~840 m/s, impact ammunition for the first time. The results were statistically analyzed by the Weibull method and ANOVA. The absorbed energies of the 200-219 J and limit velocities of 202-211 m/s were found statistically similar to the epoxy composites reinforced with the fique fabric from 15 to 50 vol%. Predominantly, these findings are better than those reported for the plain epoxy and aramid fabric (KevlarTM) used as stand-alone plates with the same thickness. Macrocracks in the 15 and 30 vol% fique fabric composites compromise their application as armor plates. The delamination rupture mechanism was revealed by scanning electron microscopy. By contrast, the integrity was maintained in the 40 and 50 vol% composites, ensuring superior ballistic protection compared to the use of KevlarTM.

15.
Polymers (Basel) ; 13(11)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200455

RESUMO

The coating of natural fiber by graphene oxide (GO) has, over, this past decade, attracted increasing attention as an effective way to improve the adhesion to polymer matrices and enhance the composite properties. In particular, the GO-functionalized 30 vol% curaua fiber (Ananas Erectifolius) reinforcing epoxy composite was found to display superior tensile and thermogravimetric properties as well as higher fiber/matrix interfacial shear strength. In this brief report, dynamic mechanical analysis (DMA) was conducted in up to 50 vol% GO-functionalized curaua fiber reinforced epoxy matrix (EM) composites. The objective was not only to extend the amount incorporated but also for the first time investigate the composite viscoelastic behavior. The GO functionalization of curaua fibers (GOCF) improved the DMA storage (E') and loss (E″) modulus compared to the non-functionalized fiber composites. Values at 30 °C of both E' (13.44 GPa) and E″ (0.67 GPa) for 50 vol% GO-functionalized curaua fiber reinforced epoxy matrix composites (50GOCF/EM) were substantially higher than those of 20 GOCF/EM with E' (7.08 GPa) and E″ (0.22 GPa) as well as non-functionalized 50CF/EM with E' (11.04 GPa) and E″ (0.45 GPa). All these results are above the neat epoxy previously reported values of E' (3.86 GPa) and E″ (0.09 GPa). As for the tangent delta, the parameters associated with damping factor and glass transition temperature were not found to be significantly changed by GO functionalization, but decreased with respect to the neat epoxy due to chain mobility restriction.

16.
Polymers (Basel) ; 13(12)2021 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-34203077

RESUMO

Kenaf (Hibiscus cannabinus L.) is one of the most investigated and industrially applied natural fibers for polymer composite reinforcement. However, relatively limited information is available regarding its epoxy composites. In this work, both thermal and chemical properties were, for the first time, determined in kenaf fiber reinforced epoxy matrix composites. Through XRD analysis, a microfibrillar angle of 7.1° and crystallinity index of 44.3% was obtained. The FTIR analysis showed the functional groups normally found for natural lignocellulosic fibers. TMA analysis of the composites with 10 vol% and 20 vol% of kenaf fibers disclosed a higher coefficient of thermal expansion. The TG/DTG results of the epoxy composites revealed enhanced thermal stability when compared to plain epoxy. The DSC results corroborated the results obtained by TGA, which indicated a higher mass loss in the first stage for kenaf when compared to its composites. These results might contribute to kenaf fiber composite applications requiring superior performance.

17.
Polymers (Basel) ; 12(9)2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32937924

RESUMO

A basic characterization of novel epoxy matrix composites incorporated with up to 40 vol% of processed leaf fibers from the Copernicia prunifera palm tree, known as carnauba fibers, was performed. The tensile properties for the composite reinforced with 40 vol% of carnauba fibers showed an increase (40%) in the tensile strength and (69%) for the elastic modulus. All composites presented superior elongation values in comparison to neat epoxy. Izod impact tests complemented by fibers/matrix interfacial strength evaluation by pullout test and Fourier transformed infrared (FTIR) analysis revealed for the first time a significant reinforcement effect (> 9 times) caused by the carnauba fiber to polymer matrix. Additional thermogravimetric analysis (TG/DTG) showed the onset of thermal degradation for the composites (326 ~ 306 °C), which represents a better thermal stability than the plain carnauba fiber (267 °C) but slightly lower than that of the neat epoxy (342 °C). Differential scanning calorimetry (DSC) disclosed an endothermic peak at 63 °C for the neat epoxy associated with the glass transition temperature (Tg). DSC endothermic peaks for the composites, between 73 to 103 °C, and for the plain carnauba fibers, 107 °C, are attributed to moisture release. Dynamic mechanical analysis confirms Tg of 64 °C for the neat epoxy and slightly higher composite values (82-84 °C) due to the carnauba fiber interference with the epoxy macromolecular chain mobility. Both by its higher impact resistance and thermal behavior, the novel carnauba fibers epoxy composites might be considered a viable substitute for commonly used glass fiber composites.

18.
Polymers (Basel) ; 12(9)2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32911597

RESUMO

A growing environmental concern is increasing the search for new sustainable materials. In this scenario, natural lignocellulosic fibers (NLFs) became an important alternative to replace synthetic fibers commonly used as composites reinforcement. In this regard, unknown NLFs such as the caranan fiber (Mauritiella armata) found in South American rain forests revealed promising properties for engineering applications. Thus, for the first time, the present work conducted a technical characterization of caranan fiber-incorporated composites. Epoxy matrix composites with 10, 20 and 30 vol% of continuous and aligned caranan fibers were investigated by tensile tests, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Composites with more than 10% vol of caranan fibers significantly increase the elastic modulus and toughness in comparison to the neat epoxy. Indeed, the composite with 30 vol% was 50% stiffer, 130% tougher, and 100% stronger, which characterized an effective reinforcement. As for the elastic modulus, total strain and tensile toughness, there is a clear tendency of improvement with the amount of caranan fiber. The TGA disclosed the highest onset temperature of degradation (298 °C) with the least mass loss (36.8%) for the 30 vol% caranan fiber composite. It also displayed a higher degradation peak at 334 °C among the studied composites. The lowest glass transition temperature of 63 °C was obtained by DSC, while the highest of 113 °C by dynamic mechanical analysis (DMA) for the 30 vol% caranan composite. These basic technical findings emphasize the caranan fiber potential as reinforcement for polymer composites.

19.
Polymers (Basel) ; 12(9)2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32858794

RESUMO

Natural-fiber-reinforced polymer composites have recently drawn attention as new materials for ballistic armor due to sustainability benefits and lower cost as compared to conventional synthetic fibers, such as aramid and ultra-high-molecular-weight polyethylene (UHMWPE). In the present work, a comparison was carried out between the ballistic performance of UHMWPE composite, commercially known as Dyneema, and epoxy composite reinforced with 30 vol % natural fibers extracted from pineapple leaves (PALF) in a hard armor system. This hard armor system aims to provide additional protection to conventional level IIIA ballistic armor vests, made with Kevlar, by introducing the PALF composite plate, effectively changing the ballistic armor into level III. This level of protection allows the ballistic armor to be safely subjected to higher impact projectiles, such as 7.62 mm caliber rifle ammunition. The results indicate that a hard armor with a ceramic front followed by the PALF/epoxy composite meets the National Institute of Justice (NIJ) international standard for level III protection and performs comparably to that of the Dyneema plate, commonly used in armor vests.

20.
Polymers (Basel) ; 12(7)2020 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-32708475

RESUMO

A novel class of graphene-based materials incorporated into natural lignocellulosic fiber (NLF) polymer composites is surging since 2011. The present overview is the first attempt to compile achievements regarding this novel class of composites both in terms of technical and scientific researches as well as development of innovative products. A brief description of the graphene nature and its recent isolation from graphite is initially presented together with the processing of its main derivatives. In particular, graphene-based materials, such as nanographene (NG), exfoliated graphene/graphite nanoplatelet (GNP), graphene oxide (GO) and reduced graphene oxide (rGO), as well as other carbon-based nanomaterials, such as carbon nanotube (CNT), are effectively being incorporated into NLF composites. Their disclosed superior mechanical, thermal, electrical, and ballistic properties are discussed in specific publications. Interfacial shear strength of 575 MPa and tensile strength of 379 MPa were attained in 1 wt % GO-jute fiber and 0.75 wt % jute fiber, respectively, epoxy composites. Moreover, a Young's modulus of 44.4 GPa was reported for 0.75 wt % GO-jute fiber composite. An important point of interest concerning this incorporation is the fact that the amphiphilic character of graphene allows a better way to enhance the interfacial adhesion between hydrophilic NLF and hydrophobic polymer matrix. As indicated in this overview, two basic incorporation strategies have so far been adopted. In the first, NG, GNP, GO, rGO and CNT are used as hybrid filler together with NLF to reinforce polymer composites. The second one starts with GO or rGO as a coating to functionalize molecular bonding with NLF, which is then added into a polymeric matrix. Both strategies are contributing to develop innovative products for energy storage, drug release, biosensor, functional electronic clothes, medical implants, and armor for ballistic protection. As such, this first overview intends to provide a critical assessment of a surging class of composite materials and unveil successful development associated with graphene incorporated NLF polymer composites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...