Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Sci Rep ; 14(1): 5930, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467669

RESUMO

With widespread cultivation, Cucurbita moschata stands out for the carotenoid content of its fruits such as ß and α-carotene, components with pronounced provitamin A function and antioxidant activity. C. moschata seed oil has a high monounsaturated fatty acid content and vitamin E, constituting a lipid source of high chemical-nutritional quality. The present study evaluates the agronomic and chemical-nutritional aspects of 91 accessions of C. moschata kept at the BGH-UFV and propose the establishment of a core collection based on multivariate approaches and on the implementation of Artificial Neural Networks (ANNs). ANNs was more efficient in identifying similarity patterns and in organizing the distance between the genotypes in the groups. The averages and variances of traits in the CC formed using a 15% sampling of accessions, were closer to those of the complete collection, particularly for accumulated degree days for flowering, the mass of seeds per fruit, and seed and oil productivity. Establishing the 15% CC, based on the broad characterization of this germplasm, will be crucial to optimize the evaluation and use of promising accessions from this collection in C. moschata breeding programs, especially for traits of high chemical-nutritional importance such as the carotenoid content and the fatty acid profile.


Assuntos
Cucurbita , Cucurbita/genética , Brasil , Melhoramento Vegetal , Carotenoides , Frutas/genética
2.
Sci Rep ; 14(1): 1062, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212638

RESUMO

In the context of multi-environment trials (MET), genomic prediction is proposed as a tool that allows the prediction of the phenotype of single cross hybrids that were not tested in field trials. This approach saves time and costs compared to traditional breeding methods. Thus, this study aimed to evaluate the genomic prediction of single cross maize hybrids not tested in MET, grain yield and female flowering time. We also aimed to propose an application of machine learning methodologies in MET in the prediction of hybrids and compare their performance with Genomic best linear unbiased prediction (GBLUP) with non-additive effects. Our results highlight that both methodologies are efficient and can be used in maize breeding programs to accurately predict the performance of hybrids in specific environments. The best methodology is case-dependent, specifically, to explore the potential of GBLUP, it is important to perform accurate modeling of the variance components to optimize the prediction of new hybrids. On the other hand, machine learning methodologies can capture non-additive effects without making any assumptions at the outset of the model. Overall, predicting the performance of new hybrids that were not evaluated in any field trials was more challenging than predicting hybrids in sparse test designs.


Assuntos
Hibridização Genética , Zea mays , Genótipo , Zea mays/genética , Genoma de Planta , Melhoramento Vegetal , Fenótipo , Genômica/métodos , Aprendizado de Máquina , Modelos Genéticos
3.
Theor Appl Genet ; 137(1): 9, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102495

RESUMO

KEY MESSAGE: An approach for handling visual scores with potential errors and subjectivity in scores was evaluated in simulated and blueberry recurrent selection breeding schemes to assist breeders in their decision-making. Most genomic prediction methods are based on assumptions of normality due to their simplicity and ease of implementation. However, in plant and animal breeding, continuous traits are often visually scored as categorical traits and analyzed as a Gaussian variable, thus violating the normality assumption, which could affect the prediction of breeding values and the estimation of genetic parameters. In this study, we examined the main challenges of visual scores for genomic prediction and genetic parameter estimation using mixed models, Bayesian, and machine learning methods. We evaluated these approaches using simulated and real breeding data sets. Our contribution in this study is a five-fold demonstration: (i) collecting data using an intermediate number of categories (1-3 and 1-5) is the best strategy, even considering errors associated with visual scores; (ii) Linear Mixed Models and Bayesian Linear Regression are robust to the normality violation, but marginal gains can be achieved when using Bayesian Ordinal Regression Models (BORM) and Random Forest Classification; (iii) genetic parameters are better estimated using BORM; (iv) our conclusions using simulated data are also applicable to real data in autotetraploid blueberry; and (v) a comparison of continuous and categorical phenotypes found that investing in the evaluation of 600-1000 categorical data points with low error, when it is not feasible to collect continuous phenotypes, is a strategy for improving predictive abilities. Our findings suggest the best approaches for effectively using visual scores traits to explore genetic information in breeding programs and highlight the importance of investing in the training of evaluator teams and in high-quality phenotyping.


Assuntos
Herança Multifatorial , Melhoramento Vegetal , Animais , Teorema de Bayes , Genoma , Genômica/métodos , Fenótipo , Modelos Genéticos
4.
Sci Rep ; 13(1): 9795, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328527

RESUMO

In forest genetic improvement programs for non-domesticated species, limited knowledge of kinship can compromise or make the estimation of variance components and genetic parameters of traits of interest unfeasible. We used mixed models and genomics (in the latter, considering additive and non-additive effects) to evaluate the genetic architecture of 12 traits in juçaizeiro for fruit production. A population of 275 genotypes without genetic relationship knowledge was phenotyped over three years and genotyped by whole genome SNP markers. We have verified superiority in the quality of the fits, the prediction accuracy for unbalanced data, and the possibility of unfolding the genetic effects into their additive and non-additive terms in the genomic models. Estimates of the variance components and genetic parameters obtained by the additive models may be overestimated since, when considering the dominance effect in the model, there are substantial reductions in them. The number of bunches, fresh fruit mass of bunch, rachis length, fresh mass of 25 fruits, and amount of pulp were strongly influenced by the dominance effect, showing that genomic models with such effect should be considered for these traits, which may result in selective improvements by being able to return more accurate genomic breeding values. The present study reveals the additive and non-additive genetic control of the evaluated traits and highlights the importance of genomic information-based approaches for populations without knowledge of kinship and experimental design. Our findings underscore the critical role of genomic data in elucidating the genetic control architecture of quantitative traits, thereby providing crucial insights for driving species' genetic improvement.


Assuntos
Euterpe , Frutas/genética , Melhoramento Vegetal , Genoma , Fenótipo , Genótipo , Genômica , Modelos Genéticos , Polimorfismo de Nucleotídeo Único
5.
Sci Rep ; 13(1): 9585, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37311810

RESUMO

The aim of this study was to evaluate the performance of Quantile Regression (QR) in Genome-Wide Association Studies (GWAS) regarding the ability to detect QTLs (Quantitative Trait Locus) associated with phenotypic traits of interest, considering different population sizes. For this, simulated data was used, with traits of different levels of heritability (0.30 and 0.50), and controlled by 3 and 100 QTLs. Populations of 1,000 to 200 individuals were defined, with a random reduction of 100 individuals for each population. The power of detection of QTLs and the false positive rate were obtained by means of QR considering three different quantiles (0.10, 0.50 and 0.90) and also by means of the General Linear Model (GLM). In general, it was observed that the QR models showed greater power of detection of QTLs in all scenarios evaluated and a relatively low false positive rate in scenarios with a greater number of individuals. The models with the highest detection power of true QTLs at the extreme quantils (0.10 and 0.90) were the ones with the highest detection power of true QTLs. In contrast, the analysis based on the GLM detected few (scenarios with larger population size) or no QTLs in the evaluated scenarios. In the scenarios with low heritability, QR obtained a high detection power. Thus, it was verified that the use of QR in GWAS is effective, allowing the detection of QTLs associated with traits of interest even in scenarios with few genotyped and phenotyped individuals.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Humanos , Densidade Demográfica , Locos de Características Quantitativas/genética , Genótipo , Modelos Lineares
6.
PLoS One ; 18(4): e0275407, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37027420

RESUMO

Popularly known as juçaizeiro, Euterpe edulis has been gaining prominence in the fruit growing sector and has demanded the development of superior genetic materials. Since it is a native species and still little studied, the application of more sophisticated techniques can result in higher gains with less time. Until now, there are no studies that apply genomic prediction for this crop, especially in multi-trait analysis. In this sense, this study aimed to apply new methods and breeding techniques for the juçaizeiro, to optimize this breeding program through the application of genomic prediction. This data consisted of 275 juçaizeiro genotypes from a population of Rio Novo do Sul-ES, Brazil. The genomic prediction was performed using the multi-trait (G-BLUP MT) and single-trait (G-BLUP ST) models and the selection of superior genotypes was based on a selection index. Similar results for predictive ability were observed for both models. However, the G-BLUP ST model provided greater selection gains when compared to the G-BLUP MT. For this reason, the genomic estimated breeding values (GEBVs) from the G-BLUP ST, were used to select the six superior genotypes (UFES.A.RN.390, UFES.A.RN.386, UFES.A.RN.080, UFES.A.RN.383, UFES.S.RN.098, and UFES.S.RN.093). This was intended to provide superior genetic materials for the development of seedlings and implantation of productive orchards, which will meet the demands of the productive, industrial and consumer market.


Assuntos
Euterpe , Melhoramento Vegetal , Genoma , Genômica/métodos , Genótipo , Fenótipo , Modelos Genéticos , Polimorfismo de Nucleotídeo Único
7.
Genes (Basel) ; 14(1)2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36672930

RESUMO

In this study, marker-assisted recurrent selection was evaluated for pyramiding resistance gene alleles against coffee leaf rust (CLR) and coffee berry diseases (CBD) in Coffea arabica. A total of 144 genotypes corresponding to 12 hybrid populations from crosses between eight parent plants with desired morphological and agronomic traits were evaluated. Molecular data were used for cross-certification, diversity study and resistance allele marker-assisted selection (MAS) against the causal agent of coffee leaf rust (Hemileia vastatrix) and coffee berry disease (Colletotrichum kahawae). In addition, nine morphological and agronomic traits were evaluated to determine the components of variance, select superior hybrids, and estimate genetic gain. From the genotypes evaluated, 134 were confirmed as hybrids. The genetic diversity between and within populations was 75.5% and 24.5%, respectively, and the cluster analysis revealed three primary groups. Pyramiding of CLR and CBD resistance genes was conducted in 11 genotypes using MAS. A selection intensity of 30% resulted in a gain of over 50% compared to the original population. Selected hybrids with increased gain also showed greater genetic divergence in addition to the pyramided resistance alleles. The strategies used were, therefore, efficient to select superior coffee hybrids for recurrent selection programs and could be used as a source of resistance in various crosses.


Assuntos
Coffea , Resistência à Doença , Resistência à Doença/genética , Coffea/genética , Alelos , Doenças das Plantas/genética
8.
Comput Struct Biotechnol J ; 20: 5490-5499, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36249559

RESUMO

Genomic wide selection (GWS) is one contributions of molecular genetics to breeding. Machine learning (ML) and artificial neural networks (ANN) methods are non-parameterized and can develop more accurate and parsimonious models for GWS analysis. Multivariate Adaptive Regression Splines (MARS) is considered one of the most flexible ML methods, automatically modeling nonlinearities and interactions of the predictor variables. This study aimed to evaluate and compare methods based on ANN, ML, including MARS, and G-BLUP through GWS. An F2 population formed by 1000 individuals and genotyped for 4010 SNP markers and twelve traits from a model considering epistatic effect, with QTL numbers ranging from eight to 480 and heritability ( h 2 ) of 0.3, 0.5 or 0.8 were simulated. Variation in heritability and number of QTL impacts the performance of methods. About quantitative traits (40, 80, 120, 240, and 480 QTLs) was observed highest R2 to Radial Base Network (RBF) and G-BLUP, followed by Random Forest (RF), Bagging (BA), and Boosting (BO). RF and BA also showed better results for traits to h 2 of 0.3 with R 2 values 16.51% and 16.30%, respectively, while MARS methods showed better results for oligogenic traits with R 2 values ranging from 39,12 % to 43,20 % in h 2 of 0.5 and from 59.92% to 78,56% in h 2 of 0.8. Non-additive MARS methods also showed high R2 for traits with high heritability and 240 QTLs or more. ANN and ML methods are powerful tools to predict genetic values in traits with epistatic effect, for different degrees of heritability and QTL numbers.

9.
PLoS One ; 17(5): e0259607, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35503772

RESUMO

The biggest challenge for the reproduction of flood-irrigated rice is to identify superior genotypes that present development of high-yielding varieties with specific grain qualities, resistance to abiotic and biotic stresses in addition to superior adaptation to the target environment. Thus, the objectives of this study were to propose a multi-trait and multi-environment Bayesian model to estimate genetic parameters for the flood-irrigated rice crop. To this end, twenty-five rice genotypes belonging to the flood-irrigated rice breeding program were evaluated. Grain yield and flowering were evaluated in the agricultural year 2017/2018. The experimental design used in all experiments was a randomized block design with three replications. The Markov Chain Monte Carlo algorithm was used to estimate genetic parameters and genetic values. The flowering is highly heritable by the Bayesian credibility interval: h2 = 0.039-0.80, and 0.02-0.91, environment 1 and 2, respectively. The genetic correlation between traits was significantly different from zero in the two environments (environment 1: -0.80 to 0.74; environment 2: -0.82 to 0.86. The relationship of CVe and CVg higher for flowering in the reduced model (CVg/CVe = 5.83 and 13.98, environments 1 and 2, respectively). For the complete model, this trait presented an estimate of the relative variation index of: CVe = 4.28 and 4.21, environments 1 and 2, respectively. In summary, the multi-trait and multi-environment Bayesian model allowed a reliable estimate of the genetic parameter of flood-irrigated rice. Bayesian analyzes provide robust inference of genetic parameters. Therefore, we recommend this model for genetic evaluation of flood-irrigated rice genotypes, and their generalization, in other crops. Precise estimates of genetic parameters bring new perspectives on the application of Bayesian methods to solve modeling problems in the genetic improvement of flood-irrigated rice.


Assuntos
Oryza , Teorema de Bayes , Grão Comestível , Inundações , Genótipo , Oryza/genética , Fenótipo , Melhoramento Vegetal/métodos
10.
Euphytica ; 218(4): 42, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35310815

RESUMO

Brazil stands out worldwide in the production of coffee. The observed increases in its productivity and morpho agronomic traits are the results of the improvement of several methodologies applied in obtaining improved cultivars, among which the predictive methods of genetic value stand out. These contribute significantly to the selection of higher genotypes, increasing the genetic gain per unit time. In this context, genomic-wide selection (GWS) is a tool that stands out, since it allows predicting the future phenotype of an individual based only on molecular information. Performing joint selection of traits is the interest of most breeding programs, and factor analysis (FA) has been used to assist in this end. The aim of this study was to evaluate the use of FA in the context of GWS, in genotypes of Coffea canephora. It was found that FA was efficient to elucidate the relationships between the traits and generate new variables. The factors formed can assist in the selection, as in addition to allowing joint interpretations, they present good estimates of predictive capacity, heritability and accuracy. Furthermore, high agreement was observed between the individuals selected based on the factors and those selected considering the individual traits. Additionally, it was observed agreement between the top 10% individuals selected based on the "vigor factor" and each variable individually. However, the selection based on "vigor factor" presented individuals with more suitable size from the phytotechnical point of view.

11.
PLoS One ; 17(1): e0262055, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35081139

RESUMO

Many methodologies are used to predict the genetic merit in animals and plants, but some of them require priori assumptions that may increase the complexity of the model. Artificial neural network (ANN) has advantage to not require priori assumptions about the relationships between inputs and the output allowing great flexibility to handle different types of complex non-additive effects, such as dominance and epistasis. Despite this advantage, the biological interpretability of ANNs is still limited. The aim of this research was to estimate the heritability and markers effects for two traits in Coffea canephora using an additive-dominance architecture ANN and to compare it with genomic best linear unbiased prediction (GBLUP). The data used consists of 51 clones of C. canephora varietal Conilon, 32 of varietal group Robusta and 82 intervarietal hybrids. From this, 165 phenotyped individuals were genotyped for 14,387 SNPs. Due to the high computational cost of ANNs, we used Bagging decision tree to reduce the dimensionality of the data, selecting the markers that accumulated 70% of the total importance. An ANN with three hidden layers was run, each varying from 1 to 40 neurons summing 64,000 neural networks. The network architectures with the best predictive ability were selected. The best architectures were composed by 4, 15, and 33 neurons in the first, second and third hidden layers, respectively, for yield, and by 13, 20, and 24 neurons, respectively for rust resistance. The predictive ability was greater when using ANN with three hidden layers than using one hidden layer and GBLUP, with 0.72 and 0.88 for yield and coffee leaf rust resistance, respectively. The concordance rate (CR) of the 10% larger markers effects among the methods varied between 10% and 13.8%, for additive effects and between 5.4% and 11.9% for dominance effects. The narrow-sense ([Formula: see text]) and dominance-only ([Formula: see text]) heritability estimates were 0.25 and 0.06, respectively, for yield, and 0.67 and 0.03, respectively for rust resistance. The ANN was able to estimate the heritabilities from an additive-dominance genomic architectures and the ANN with three hidden layers obtained best predictive ability when compared with those obtained from GBLUP and ANN with one hidden layer.


Assuntos
Genômica
12.
PLoS One ; 16(11): e0257213, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34843488

RESUMO

The present study evaluated the importance of auxiliary traits of a principal trait based on phenotypic information and previously known genetic structure using computational intelligence and machine learning to develop predictive tools for plant breeding. Data of an F2 population represented by 500 individuals, obtained from a cross between contrasting homozygous parents, were simulated. Phenotypic traits were simulated based on previously established means and heritability estimates (30%, 50%, and 80%); traits were distributed in a genome with 10 linkage groups, considering two alleles per marker. Four different scenarios were considered. For the principal trait, heritability was 50%, and 40 control loci were distributed in five linkage groups. Another phenotypic control trait with the same complexity as the principal trait but without any genetic relationship with it and without pleiotropy or a factorial link between the control loci for both traits was simulated. These traits shared a large number of control loci with the principal trait, but could be distinguished by the differential action of the environment on them, as reflected in heritability estimates (30%, 50%, and 80%). The coefficient of determination were considered to evaluate the proposed methodologies. Multiple regression, computational intelligence, and machine learning were used to predict the importance of the tested traits. Computational intelligence and machine learning were superior in extracting nonlinear information from model inputs and quantifying the relative contributions of phenotypic traits. The R2 values ranged from 44.0% - 83.0% and 79.0% - 94.0%, for computational intelligence and machine learning, respectively. In conclusion, the relative contributions of auxiliary traits in different scenarios in plant breeding programs can be efficiently predicted using computational intelligence and machine learning.


Assuntos
Simulação por Computador , Aprendizado de Máquina , Melhoramento Vegetal , Inteligência Artificial , Ligação Genética , Genótipo , Fenótipo , Locos de Características Quantitativas
13.
J Food Sci Technol ; 58(7): 2815-2824, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34194115

RESUMO

The line scale is widely used in different lengths to quantify the intensity of descriptors in sensory evaluation. Since studies related to its size are still limited the objective was to determine what variables of descriptive sensory evaluation can be influenced when different scale length is considered in two different methods: Optimized Descriptive Profile (ODP) (low degree of training) and Conventional Profile (CP) (high degree of training). Five chocolate samples were evaluated by two panels, one using the 9 cm and the other using the 15 cm line scale. The panels performed the sensory analysis using the ODP and after the CP method. The following criteria were investigated: interaction between sample and evaluator, discriminative capacity, repeatability of results, and frequency of score use on the unstructured scale. The influence of scale length on sensory responses was similar in the two methods (ODP and CP). When comparing the two scales in both methods, it was observed that the 15 cm scale resulted in an improvement in discriminative capacity, reduction of interaction and the evaluators tended to distribute their ratings more evenly across this scale length. The repeatability of results showed a slight tendency to be better on the 9 cm scale.

14.
PLoS One ; 16(1): e0245298, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33434204

RESUMO

Several factors such as genotype, environment, and post-harvest processing can affect the responses of important traits in the coffee production chain. Determining the influence of these factors is of great relevance, as they can be indicators of the characteristics of the coffee produced. The most efficient models choice to be applied should take into account the variety of information and the particularities of each biological material. This study was developed to evaluate statistical and machine learning models that would better discriminate environments through multi-traits of coffee genotypes and identify the main agronomic and beverage quality traits responsible for the variation of the environments. For that, 31 morpho-agronomic and post-harvest traits were evaluated, from field experiments installed in three municipalities in the Matas de Minas region, in the State of Minas Gerais, Brazil. Two types of post-harvest processing were evaluated: natural and pulped. The apparent error rate was estimated for each method. The Multilayer Perceptron and Radial Basis Function networks were able to discriminate the coffee samples in multi-environment more efficiently than the other methods, identifying differences in multi-traits responses according to the production sites and type of post-harvest processing. The local factors did not present specific traits that favored the severity of diseases and differentiated vegetative vigor. Sensory traits acidity and fragrance/aroma score also made little contribution to the discrimination process, indicating that acidity and fragrance/aroma are characteristic of coffee produced and all coffee samples evaluated are of the special type in the Mata of Minas region. The main traits responsible for the differentiation of production sites are plant height, fruit size, and bean production. The sensory trait "Body" is the main one to discriminate the form of post-harvest processing.


Assuntos
Café/química , Qualidade dos Alimentos , Aprendizado de Máquina , Brasil , Análise por Conglomerados , Coffea/genética , Análise Discriminante , Manipulação de Alimentos/métodos , Genótipo , Análise de Componente Principal
15.
PLoS One ; 16(1): e0243666, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33400704

RESUMO

This study assessed the efficiency of Genomic selection (GS) or genome-wide selection (GWS), based on Regularized Quantile Regression (RQR), in the selection of genotypes to breed autogamous plant populations with oligogenic traits. To this end, simulated data of an F2 population were used, with traits with different heritability levels (0.10, 0.20 and 0.40), controlled by four genes. The generations were advanced (up to F6) at two selection intensities (10% and 20%). The genomic genetic value was computed by RQR for different quantiles (0.10, 0.50 and 0.90), and by the traditional GWS methods, specifically RR-BLUP and BLASSO. A second objective was to find the statistical methodology that allows the fastest fixation of favorable alleles. In general, the results of the RQR model were better than or equal to those of traditional GWS methodologies, achieving the fixation of favorable alleles in most of the evaluated scenarios. At a heritability level of 0.40 and a selection intensity of 10%, RQR (0.50) was the only methodology that fixed the alleles quickly, i.e., in the fourth generation. Thus, it was concluded that the application of RQR in plant breeding, to simulated autogamous plant populations with oligogenic traits, could reduce time and consequently costs, due to the reduction of selfing generations to fix alleles in the evaluated scenarios.


Assuntos
Simulação por Computador , Genoma de Planta , Modelos Genéticos , Plantas/genética , Seleção Genética , Marcadores Genéticos , Genótipo , Melhoramento Vegetal , Característica Quantitativa Herdável
16.
Ciênc. rural (Online) ; 51(5): e20190984, 2021. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1153898

RESUMO

ABSTRACT: Empirical patterns of linkage disequilibrium (LD) can be used to increase the statistical power of genetic mapping. This study was carried out with the objective of verifying the efficacy of factor analysis (AF) applied to data sets of molecular markers of the SNP type, in order to identify linkage groups and haplotypes blocks. The SNPs data set used was derived from a simulation process of an F2 population, containing 2000 marks with information of 500 individuals. The estimation of the factorial loadings of FA was made in two ways, considering the matrix of distances between the markers (A) and considering the correlation matrix (R). The number of factors (k) to be used was established based on the graph scree-plot and based on the proportion of the total variance explained. Results indicated that matrices A and R lead to similar results. Based on the scree-plot we considered k equal to 10 and the factors interpreted as being representative of the bonding groups. The second criterion led to a number of factors equal to 50, and the factors interpreted as being representative of the haplotypes blocks. This showed the potential of the technique, making it possible to obtain results applicable to any type of population, helping or corroborating the interpretation of genomic studies. The study demonstrated that AF was able to identify patterns of association between markers, identifying subgroups of markers that reflect factor binding groups and also linkage disequilibrium groups.


RESUMO: Padrões empíricos de desequilíbrio de ligação (LD) podem ser utilizados para aumentar o poder estatístico do mapeamento genético. Este trabalho foi realizado com o objetivo de verificar a eficácia da análise de fatores (AF) aplicada a conjuntos de dados de marcadores moleculares do tipo SNP, visando identificar grupos de ligação e blocos de haplótipos. O conjunto de dados SNPs utilizado foi oriundo de um processo de simulação de uma população F2, contendo 2000 marcas com informações de 500 indivíduos. A estimação das cargas fatoriais (loadings) da AF foi feita de duas formas, considerando a matriz de distâncias entre os marcadores (A) e considerando a matriz de correlação (R). O número de fatores (k) a ser utilizado foi estabelecido com base no gráfico scree-plot e com base na proporção da variância total explicada. Os resultados indicam que as matrizes A e R conduzem a resultados similares. Com base no scree-plot considerou-se k igual a 10 e os fatores interpretados como sendo representativos dos grupos de ligação. O segundo critério conduziu a um número de fatores igual a 50, e os fatores interpretados como sendo representativos dos blocos de haplótipos. Isto mostra o potencial da técnica que permite obter resultados aplicáveis ​​a qualquer tipo de população, corroborando a interpretação de estudos genômicos. O trabalho demonstrou que a AF foi capaz de identificar padrões de associação entre marcadores, identificando subgrupos de marcadores que refletem grupos de ligação fatorial e também grupos de desequilíbrio de ligação.

17.
PLoS One ; 15(7): e0236571, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32730284

RESUMO

The occurrence of genotype by environment interaction (G x E), which is defined as the differential response of genotypes to environmental variation, is frequently reported in maize cultures, making it challenging to recommend cultivars. Methods allowing to study the potential nonlinear pattern of genotype responses to environmental variation allied to prior beliefs on unknown parameters are interesting to evaluate the phenotypic adaptability and stability of genotypes. In this context, the present study aimed to assess the adaptability and stability of maize hybrids, by using the Bayesian segmented regression model, and evaluate the efficacy of using informative and minimally informative prior distributions for the selection of cultivars. Randomized complete-block design experiments were carried out to study the yield (kg/ha) of 25 maize hybrids, in 22 different environments, in Northeastern Brazil. The Bayesian segmented regression model fitted using informative prior distributions presented lower credibility intervals and Deviance Criterium of Information values, compared to those obtained by fitting using minimally informative distributions. Therefore, the model using informative prior distributions was considered for the adaptability and stability evaluation of maize genotypes. Once most northeastern farmers in Brazil have limited capital, the genotype P4285HX should be considered for planting, due to its high yield performance and adaptability to unfavorable environments.


Assuntos
Modelos Genéticos , Zea mays/genética , Adaptação Fisiológica/genética , Teorema de Bayes , Interação Gene-Ambiente , Genótipo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
18.
Int J Genomics ; 2020: 9354204, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32149072

RESUMO

Actinobacillus pleuropneumoniae is the etiologic agent of porcine pleuropneumonia. Currently, there are 18 different serotypes; the serotype 8 is the most widely distributed in the United States, Canada, United Kingdom, and southeastern Brazil. In this study, genomes of seven A. pleuropneumoniae serotype 8 clinical isolates were compared to the other genomes of twelve serotypes. The analyses of serotype 8 genomes resulted in a set of 2352 protein-coding sequences. Of these sequences, 76.6% are present in all serotypes, 18.5% are shared with some serotypes, and 4.9% were differential. This differential portion was characterized as a series of hypothetical and regulatory protein sequences: mobile element sequence. Synteny analysis demonstrated possible events of gene recombination and acquisition by horizontal gene transfer (HGT) in this species. A total of 30 sequences related to prophages were identified in the genomes. These sequences represented 0.3 to 3.5% of the genome of the strains analyzed, and 16 of them contained complete prophages. Similarity analysis between complete prophage sequences evidenced a possible HGT with species belonging to the family Pasteurellaceae. Thus, mobile genetic elements, such as prophages, are important components of the differential portion of the A. pleuropneumoniae genome and demonstrate a central role in the evolution of the species. This study represents the first study done to understand the genome of A. pleuropneumoniae serotype 8.

19.
Ciênc. rural (Online) ; 50(1): e20180385, 2020. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1055840

RESUMO

ABSTRACT: The objective of this study was to adjust nonlinear quantile regression models for the study of dry matter accumulation in garlic plants over time, and to compare them to models fitted by the ordinary least squares method. The total dry matter of nine garlic accessions belonging to the Vegetable Germplasm Bank of Universidade Federal de Viçosa (BGH/UFV) was measured in four stages (60, 90, 120 and 150 days after planting), and those values were used for the nonlinear regression models fitting. For each accession, there was an adjustment of one model of quantile regression (τ=0.5) and one based on the least squares method. The nonlinear regression model fitted was the Logistic. The Akaike Information Criterion was used to evaluate the goodness of fit of the models. Accessions were grouped using the UPGMA algorithm, with the estimates of the parameters with biological interpretation as variables. The nonlinear quantile regression is efficient for the adjustment of models for dry matter accumulation in garlic plants over time. The estimated parameters are more uniform and robust in the presence of asymmetry in the distribution of the data, heterogeneous variances, and outliers.


RESUMO: Este trabalho teve como objetivo ajustar modelos de regressão quantílica não linear para o estudo do acúmulo de matéria seca total em plantas de alho ao longo do tempo, e compará-los com modelos ajustados pelo método dos mínimos quadrados. A matéria seca total de nove acessos de alho pertencentes ao Banco de Germoplasma de Hortaliças da Universidade Federal de Viçosa (BGH/UFV) foi avaliada em quatro períodos (60, 90, 120 e 150 dias após plantio), e estes valores foram utilizados para o ajuste de modelos de regressão - não linear - logística. Para cada acesso, foram ajustados um modelo de regressão quantílica (τ=0,5) e um modelo pela metodologia dos mínimos quadrados. Para avaliar a qualidade de ajuste dos modelos foi utilizado o Critério de Informação de Akaike. Os acessos foram agrupados pelo algoritmo UPGMA, utilizando as estimativas dos parâmetros com interpretação biológica como variáveis. A regressão quantílica não linear foi eficiente no ajuste de modelos para descrição do acúmulo de matéria seca ao longo do tempo. As estimativas de parâmetros foram mais uniformes e robustas na presença de dados assimétricos, variâncias heterogêneas e de valores discrepantes.

20.
PLoS One ; 14(4): e0215315, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30998705

RESUMO

At present, single-trait best linear unbiased prediction (BLUP) is the standard method for genetic selection in soybean. However, when genetic selection is performed based on two or more genetically correlated traits and these are analyzed individually, selection bias may arise. Under these conditions, considering the correlation structure between the evaluated traits may provide more-accurate genetic estimates for the evaluated parameters, even under environmental influences. The present study was thus developed to examine the efficiency and applicability of multi-trait multi-environment (MTME) models by the residual maximum likelihood (REML/BLUP) and Bayesian approaches in the genetic selection of segregating soybean progeny. The study involved data pertaining to 203 soybean F2:4 progeny assessed in two environments for the following traits: number of days to maturity (DM), 100-seed weight (SW), and average seed yield per plot (SY). Variance components and genetic and non-genetic parameters were estimated via the REML/BLUP and Bayesian methods. The variance components estimated and the breeding values and genetic gains predicted with selection through the Bayesian procedure were similar to those obtained by REML/BLUP. The frequentist and Bayesian MTME models provided higher estimates of broad-sense heritability per plot (or heritability of total effects of progeny; [Formula: see text]) and mean accuracy of progeny than their respective single-trait versions. Bayesian analysis provided the credibility intervals for the estimates of [Formula: see text]. Therefore, MTME led to greater predicted gains from selection. On this basis, this procedure can be efficiently applied in the genetic selection of segregating soybean progeny.


Assuntos
Interação Gene-Ambiente , Genótipo , Glycine max/genética , Modelos Genéticos , Herança Multifatorial , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...