Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(11): e0294054, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37967102

RESUMO

The raising concern of drug resistance, having substantial impacts on public health, has instigated the search of new natural compounds with substantial medicinal activity. In order to find out a natural solution, the current study has utilized prodigiosin, a linear tripyrrole red pigment, as an active ingredient to control bacterial proliferation and prevent cellular oxidation caused by ROS (Reactive Oxygen Species). A prodigiosin-producing bacterium BRL41 was isolated from the ancient Barhind soil of BCSIR Rajshahi Laboratories, Bangladesh, and its morphological and biochemical characteristics were investigated. Whole genome sequencing data of the isolate revealed its identity as Serratia sp. and conferred the presence of prodigiosin gene cluster in the bacterial genome. "Prodigiosin NRPS", among the 10 analyzed gene clusters, showed 100% similarity with query sequences where pigC, pigH, pigI, and pigJ were identified as fundamental genes for prodigiosin biosynthesis. Some other prominent clusters for synthesis of ririwpeptides, yersinopine, trichrysobactin were also found in the chromosome of BRL41, whilst the rest displayed less similarity with query sequences. Except some first-generation beta-lactam resistance genes, no virulence and resistance genes were found in the genome of BRL41. Structural illumination of the extracted red pigment by spectrophotometric scanning, Thin-Layer Chromatography (TLC), Fourier Transform Infrared Spectroscopy (FTIR), and change of color at different pH solutions verified the identity of the isolated compound as prodigiosin. Serratia sp. BRL41 attained its maximum productivity 564.74 units/cell at temperature 30˚C and pH 7.5 in two-fold diluted nutrient broth medium. The compound exhibited promising antibacterial activity against Gram-positive and Gram-negative bacteria with MIC (Minimum Inhibitory Concentration) and MBC (Minimum Bactericidal Concentration) values ranged from 3.9 to15.62 µg/mL and 7.81 to 31.25 µg/mL respectively. At concentration 500 µg/mL, except in Salmonella enterica ATCC-10708, prodigiosin significantly diminished biofilm formed by Listeria monocytogens ATCC-3193, Pseudomonas aeruginosa ATCC-9027, Escherichia coli (environmental isolate), Staphylococcus aureus (environmental isolate). Cellular glutathione level (GSH) was elevated upon application of 250 and 500 µg/mL pigment where 125 µg/mL failed to show any free radical scavenging activity. Additionally, release of cellular components in growth media of both Gram-positive and Gram-negative bacteria were facilitated by the extract that might be associated with cell membrane destabilization. Therefore, the overall findings of antimicrobial, antibiofilm and antioxidant activities suggest that in time to come prodigiosin might be a potential natural source to treat various diseases and infections.


Assuntos
Anti-Infecciosos , Prodigiosina , Serratia/genética , Serratia/metabolismo , Antibacterianos/química , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Bangladesh , Anti-Infecciosos/metabolismo , Família Multigênica , Serratia marcescens/genética , Serratia marcescens/metabolismo
2.
Sci Rep ; 13(1): 16659, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37789078

RESUMO

Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) is the gold standard method for SARS-CoV-2 detection, and several qRT-PCR kits have been established targeting different genes of the virus. Due to the high mutation rate of these genes, false negative results arise thus complicating the interpretation of the diagnosis and increasing the need of alternative targets. In this study, an alternative approach for the detection of SARS-CoV-2 viral RNA targeting the membrane (M) gene of the virus using qRT-PCR was described. Performance evaluation of this newly developed in-house assay against commercial qRT-PCR kits was done using clinical oropharyngeal specimens of COVID-19 positive patients. The limit of detection was determined using successive dilutions of known copies of SARS-CoV-2 pseudovirus. The M gene based assay was able to detect a minimum of 100 copies of virus/mL indicating its capacity to detect low viral load. The assay showed comparable accuracy, sensitivity and specificity with commercially available kits while detecting all the variants efficiently. The study concluded that the in-house M gene based assay might be an effective alternative for the currently available commercial qRT-PCR kits.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Teste para COVID-19 , Sensibilidade e Especificidade , RNA , RNA Viral/genética , RNA Viral/análise , Reação em Cadeia da Polimerase em Tempo Real/métodos
3.
Inform Med Unlocked ; 40: 101281, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37265644

RESUMO

The COVID-19 pandemic, caused by SARS-CoV-2, has globally affected both human health and economy. Several variants with a high potential for reinfection and the ability to evade immunity were detected shortly after the initial reported case of COVID-19. A total of 30 mutations in the spike protein (S) have been reported in the SARS-CoV-2 (BA.2) variant in India and South Africa, while half of these mutations are in the receptor-binding domain and have spread rapidly throughout the world. Drug repurposing offers potential advantages over the discovery of novel drugs, and one is that it can be delivered quickly without lengthy assessments and time-consuming clinical trials. In this study, computational drug design, such as pharmacophore-based virtual screening and MD simulation has been concentrated, in order to find a novel small molecular inhibitor that prevents hACE2 from binding to the receptor binding domain (RBD). three medicinal compound databases: North-East African, North African, and East African were screened and carried out a multi-step screening approach that identified three compounds, which are thymoquinol 2-O-beta-glucopyranoside (C1), lanneaflavonol (C2), and naringenin-4'-methoxy-7-O-Alpha-L-rhamnoside (C3), with excellent anti-viral properties against the RBD of the omicron variant. Furthermore, PAIN assay interference, computation bioactivity prediction, binding free energy, and dissociation constant were used to validate the top hits, which indicated good antiviral activity. The three compounds that were found may be useful against COVID-19, though more research is required. These findings could aid the development of novel therapeutic drugs against the emerging Omicron variant of SARS-CoV-2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...