Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 33(1): 833-843, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30080444

RESUMO

One-carbon metabolism provides a direct link among dietary folate/vitamin B12 exposure, the activity of the enzyme methylenetetrahydrofolate reductase (MTHFR), and epigenetic regulation of the genome via DNA methylation. Previously, it has been shown that the common c.677C > T polymorphism in MTHFR influences global DNA methylation status through a direct interaction with folate status and (indirectly) with total homocysteine (tHcy) levels. To build on that and other more recent observations that have further highlighted associations among MTHFR c.677C > T, tHcy, and aberrations in DNA methylation, we investigated whether the interaction between mildly elevated plasma tHcy and the c.677C > T polymorphism is associated with site-specific changes in DNA methylation in humans. We used data on plasma tHcy levels, c.677C > T polymorphism, and site-specific DNA methylation levels for a total of 915 white women and 335 men from the TwinsUK registry ( n = 610) and the Rotterdam study ( n = 670). We performed methylome-wide association analyses in each cohort to model the interaction between levels of tHcy and c.677C > T genotypes on DNA methylation ß values. Our meta-analysis identified 13 probes significantly associated with rs1801133 × tHcy levels [false-discovery rate (FDR) < 0.05]. The most significant associations were with a cluster of probes at the AGTRAP-MTHFR-NPPA/B gene locus on chromosome 1 (FDR = 1.3E-04), with additional probes on chromosomes 2, 3, 4, 7, 12, 16, and 19. Our top 2 hits on chromosome 1 were functionally associated with variability in expression of the TNF receptor superfamily member 8 ( TNFRSF8) gene/locus on that chromosome. This is the first study, to our knowledge, to provide a direct link between perturbations in 1-carbon metabolism, through an interaction of tHcy and the activity of MTHFR enzyme on epigenetic regulation of the genome via DNA methylation.-Nash, A. J., Mandaviya, P. R., Dib, M.-J., Uitterlinden, A. G., van Meurs, J., Heil, S. G., Andrew, T., Ahmadi, K. R. Interaction between plasma homocysteine and the MTHFR c.677C>T polymorphism is associated with site-specific changes in DNA methylation in humans.


Assuntos
Metilação de DNA , Homocisteína/sangue , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Polimorfismo Genético , Idoso , Mapeamento Cromossômico , Estudos de Coortes , Suplementos Nutricionais , Epigênese Genética , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Estudos em Gêmeos como Assunto , Vitaminas/administração & dosagem
2.
Bioinformatics ; 35(14): 2354-2361, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30535005

RESUMO

MOTIVATION: Clusters of extremely conserved non-coding elements (CNEs) mark genomic regions devoted to cis-regulation of key developmental genes in Metazoa. We have recently shown that their span coincides with that of topologically associating domains (TADs), making them useful for estimating conserved TAD boundaries in the absence of Hi-C data. The standard approach-detecting CNEs in genome alignments and then establishing the boundaries of their clusters-requires tuning of several parameters and breaks down when comparing closely related genomes. RESULTS: We present a novel, kurtosis-based measure of pairwise non-coding conservation that requires no pre-set thresholds for conservation level and length of CNEs. We show that it performs robustly across a large span of evolutionary distances, including across the closely related genomes of primates for which standard approaches fail. The method is straightforward to implement and enables detection and comparison of clusters of CNEs and estimation of underlying TADs across a vastly increased range of Metazoan genomes. AVAILABILITY AND IMPLEMENTATION: The data generated for this study, and the scripts used to generate the data, can be found at https://github.com/alexander-nash/kurtosis_conservation. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Genoma , Genômica , Animais , Evolução Biológica , Sequência Conservada , Primatas
3.
Nucleic Acids Res ; 45(22): 12611-12624, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29121339

RESUMO

Comparative genomics has revealed a class of non-protein-coding genomic sequences that display an extraordinary degree of conservation between two or more organisms, regularly exceeding that found within protein-coding exons. These elements, collectively referred to as conserved non-coding elements (CNEs), are non-randomly distributed across chromosomes and tend to cluster in the vicinity of genes with regulatory roles in multicellular development and differentiation. CNEs are organized into functional ensembles called genomic regulatory blocks-dense clusters of elements that collectively coordinate the expression of shared target genes, and whose span in many cases coincides with topologically associated domains. CNEs display sequence properties that set them apart from other sequences under constraint, and have recently been proposed as useful markers for the reconstruction of the evolutionary history of organisms. Disruption of several of these elements is known to contribute to diseases linked with development, and cancer. The emergence, evolutionary dynamics and functions of CNEs still remain poorly understood, and new approaches are required to enable comprehensive CNE identification and characterization. Here, we review current knowledge and identify challenges that need to be tackled to resolve the impasse in understanding extreme non-coding conservation.


Assuntos
Sequência Conservada/genética , Regulação da Expressão Gênica no Desenvolvimento , Genoma/genética , Sequências Reguladoras de Ácido Nucleico/genética , Animais , Sequência de Bases , Evolução Molecular , Genes Controladores do Desenvolvimento/genética , Humanos , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...