Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 154(4): 2676-2688, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37877776

RESUMO

An ocean acoustic tomography array with a radius of 150 km was deployed in the central Beaufort Gyre during 2016-2017 for the Canada Basin Acoustic Propagation Experiment. Five 250-Hz transceivers were deployed in a pentagon, with a sixth transceiver at the center. A long vertical receiving array was located northwest of the central mooring. Travel-time anomalies for refracted-surface-reflected acoustic ray paths were calculated relative to travel times computed for a range-dependent sound-speed field from in situ temperature and salinity observations. Travel-time inversions for the three-dimensional sound-speed field consistent with the uncertainties in travel time [∼2 ms root mean square (rms)], receiver and source positions (∼ 3 m rms), and sound speed calculated from conductivity-temperature-depth casts could not be obtained without introducing a deep sound-speed bias (below 1000 m). Because of the precise nature of the travel-time observations with low mesoscale and internal wave variability, the conclusion is that the internationally accepted sound-speed equation (TEOS-10) gives values at high pressure (greater than 1000 m) and low temperature (less than 0 °C) that are too high by 0.14-0.16 m s-1.

2.
Nat Geosci ; 16(10): 871-876, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37808555

RESUMO

Feedbacks between ice melt, glacier flow and ocean circulation can rapidly accelerate ice loss at tidewater glaciers and alter projections of sea-level rise. At the core of these projections is a model for ice melt that neglects the fact that glacier ice contains pressurized bubbles of air due to its formation from compressed snow. Current model estimates can underpredict glacier melt at termini outside the region influenced by the subglacial discharge plume by a factor of 10-100 compared with observations. Here we use laboratory-scale experiments and theoretical arguments to show that the bursting of pressurized bubbles from glacier ice could be a source of this discrepancy. These bubbles eject air into the seawater, delivering additional buoyancy and impulses of turbulent kinetic energy to the boundary layer, accelerating ice melt. We show that real glacier ice melts 2.25 times faster than clear bubble-free ice when driven by natural convection in a laboratory setting. We extend these results to the geophysical scale to show how bubble dynamics contribute to ice melt from tidewater glaciers. Consequently, these results could increase the accuracy of modelled predictions of ice loss to better constrain sea-level rise projections globally.

3.
Cancers (Basel) ; 15(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37370680

RESUMO

Invasiveness status, histological grade, lymph node stage, and tumour size are important prognostic factors for breast cancer survival. This evaluation aims to compare these features for cancers detected by AI and human readers using digital mammography. Women diagnosed with breast cancer between 2009 and 2019 from three UK double-reading sites were included in this retrospective cohort evaluation. Differences in prognostic features of cancers detected by AI and the first human reader (R1) were assessed using chi-square tests, with significance at p < 0.05. From 1718 screen-detected cancers (SDCs) and 293 interval cancers (ICs), AI flagged 85.9% and 31.7%, respectively. R1 detected 90.8% of SDCs and 7.2% of ICs. Of the screen-detected cancers detected by the AI, 82.5% had an invasive component, compared to 81.1% for R1 (p-0.374). For the ICs, this was 91.5% and 93.8% for AI and R1, respectively (p = 0.829). For the invasive tumours, no differences were found for histological grade, tumour size, or lymph node stage. The AI detected more ICs. In summary, no differences in prognostic factors were found comparing SDC and ICs identified by AI or human readers. These findings support a potential role for AI in the double-reading workflow.

4.
J Breast Imaging ; 5(3): 267-276, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38416889

RESUMO

OBJECTIVE: To evaluate the effectiveness of a new strategy for using artificial intelligence (AI) as supporting reader for the detection of breast cancer in mammography-based double reading screening practice. METHODS: Large-scale multi-site, multi-vendor data were used to retrospectively evaluate a new paradigm of AI-supported reading. Here, the AI served as the second reader only if it agrees with the recall/no-recall decision of the first human reader. Otherwise, a second human reader made an assessment followed by the standard clinical workflow. The data included 280 594 cases from 180 542 female participants screened for breast cancer at seven screening sites in two countries and using equipment from four hardware vendors. The statistical analysis included non-inferiority and superiority testing of cancer screening performance and evaluation of the reduction in workload, measured as arbitration rate and number of cases requiring second human reading. RESULTS: Artificial intelligence as a supporting reader was found to be superior or noninferior on all screening metrics compared with human double reading while reducing the number of cases requiring second human reading by up to 87% (245 395/280 594). Compared with AI as an independent reader, the number of cases referred to arbitration was reduced from 13% (35 199/280 594) to 2% (5056/280 594). CONCLUSION: The simulation indicates that the proposed workflow retains screening performance of human double reading while substantially reducing the workload. Further research should study the impact on the second human reader because they would only assess cases in which the AI prediction and first human reader disagree.


Assuntos
Inteligência Artificial , Neoplasias da Mama , Feminino , Humanos , Carga de Trabalho , Estudos Retrospectivos , Fluxo de Trabalho , Neoplasias da Mama/diagnóstico , Mamografia
5.
Nat Commun ; 13(1): 5624, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36163322

RESUMO

Over the Texas-Louisiana Shelf in the Northern Gulf of Mexico, the eutrophic, fresh Mississippi/Atchafalaya river plume isolates saltier waters below, supporting the formation of bottom hypoxia in summer. The plume also generates strong density fronts, features of the circulation that are known pathways for the exchange of water between the ocean surface and the deep. Using high-resolution ocean observations and numerical simulations, we demonstrate how the summer land-sea breeze generates rapid vertical exchange at the plume fronts. We show that the interaction between the land-sea breeze and the fronts leads to convergence/divergence in the surface mixed layer, which further facilitates a slantwise circulation that subducts surface water along isopycnals into the interior and upwells bottom waters to the surface. This process causes significant vertical displacements of water parcels and creates a ventilation pathway for the bottom water in the northern Gulf. The ventilation of bottom water can bypass the stratification barrier associated with the Mississippi/Atchafalaya river plume and might impact the dynamics of the region's dead zone.


Assuntos
Rios , Água , Golfo do México , Louisiana , Estações do Ano
6.
Front Psychol ; 13: 1062535, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36846482

RESUMO

This paper revisits the proposal for the classification of meditation methods which we introduced in our initial 2013 publication, "Toward a Universal Taxonomy and Definition of Meditation". At that time, we advanced the thesis that meditation methods could be effectively segregated into three orthogonal categories by integrating the taxonomic principle of functional essentialism and the paradigm of Affect and Cognition; and we presented relevant research findings which supported that assertion. This iteration expands upon those theoretical and methodological elements by articulating a more comprehensive Three Tier Classification System which accounts for the full range of meditation methods; and demonstrates how recent neuroscience research continues to validate and support our thesis. This paper also introduces a novel criterion-based protocol for formulating classification systems of meditation methods, and demonstrates how this model can be used to compare and evaluate various other taxonomy proposals that have been published over the past 15 years.

7.
Front Psychol ; 11: 728, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32411046

RESUMO

Early research into meditation, including Transcendental Meditation (TM), relied exclusively on EEG to measure brain activity during meditation practice. Since the advent of neural imaging, MRI, and later fMRI, have dominated this field. Unfortunately, the use of this technology rests on the questionable assumption that lying down in a confining tube while exposed to very loud sounds would not interfere with the meditation practice. The present study was designed to assess the effects of the fMRI procedure on both the subjective and neurophysiological responses of short and long-term TM practitioners. Twenty-three TM practitioners volunteered to participate in this study: 11 short-term meditators, averaging 2.2 years practice, and 12 long-term meditators, averaging 34.8 years. The repeated-measures design included two activities for each participant, eyes-closed rest, and TM practice, in each of three conditions: sitting quietly in an upright position (normal TM practice); lying quietly in a supine position; and lying, with earplugs, inside a simulated fMRI tube (simMRI), while exposed to 110 dB recordings of an actual fMRI machine. Subjective experiences were collected after each activity in each condition. Physiological arousal was recorded using skin conductance levels. Scalp EEG was averaged into eight frequency bands within frontal and parietal leads; eLORETA software was used to explore the 3-D cortical distribution of EEG sources. During the simMRI condition, participants reported having more shallow meditation experiences, and greater agitation/distraction. Skin conductance levels paralleled self-reports, decreasing least during the simMRI condition. Frontal and parietal power decreased from sitting to simMRI in the alpha2 through gamma bands. Parietal power was higher during rest compared to TM in the alpha1 through beta2 bands. Frontal and parietal alpha1 coherence were highest during the simMRI condition. The eLORETA analysis revealed that the default mode network was more active during TM when sitting compared to the simMRI condition. The responses to the supine condition were generally between sitting and simMRI, with some significant exceptions. In conclusion, these data indicate that the fMRI procedure itself (high dB noise; lying down) strongly influences subjective and neurophysiological responses during meditation practice, and may therefore confound the interpretation of results from fMRI studies.

8.
Front Psychol ; 10: 2206, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31636579

RESUMO

[This corrects the article DOI: 10.3389/fpsyg.2013.00806.].

9.
Bull Am Meteorol Soc ; 98(11): 2429-2454, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30270923

RESUMO

Diapycnal mixing plays a primary role in the thermodynamic balance of the ocean and, consequently, in oceanic heat and carbon uptake and storage. Though observed mixing rates are on average consistent with values required by inverse models, recent attention has focused on the dramatic spatial variability, spanning several orders of magnitude, of mixing rates in both the upper and deep ocean. Away from ocean boundaries, the spatio-temporal patterns of mixing are largely driven by the geography of generation, propagation and dissipation of internal waves, which supply much of the power for turbulent mixing. Over the last five years and under the auspices of US CLIVAR, a NSF- and NOAA-supported Climate Process Team has been engaged in developing, implementing and testing dynamics-based parameterizations for internal-wave driven turbulent mixing in global ocean models. The work has primarily focused on turbulence 1) near sites of internal tide generation, 2) in the upper ocean related to wind-generated near inertial motions, 3) due to internal lee waves generated by low-frequency mesoscale flows over topography, and 4) at ocean margins. Here we review recent progress, describe the tools developed, and discuss future directions.

10.
J Psychopharmacol ; 31(1): 3-16, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27703042

RESUMO

OBJECTIVES: We aimed to set up a robust multi-centre clinical fMRI and neuropsychological platform to investigate the neuropharmacology of brain processes relevant to addiction - reward, impulsivity and emotional reactivity. Here we provide an overview of the fMRI battery, carried out across three centres, characterizing neuronal response to the tasks, along with exploring inter-centre differences in healthy participants. EXPERIMENTAL DESIGN: Three fMRI tasks were used: monetary incentive delay to probe reward sensitivity, go/no-go to probe impulsivity and an evocative images task to probe emotional reactivity. A coordinate-based activation likelihood estimation (ALE) meta-analysis was carried out for the reward and impulsivity tasks to help establish region of interest (ROI) placement. A group of healthy participants was recruited from across three centres (total n=43) to investigate inter-centre differences. Principle observations: The pattern of response observed for each of the three tasks was consistent with previous studies using similar paradigms. At the whole brain level, significant differences were not observed between centres for any task. CONCLUSIONS: In developing this platform we successfully integrated neuroimaging data from three centres, adapted validated tasks and applied whole brain and ROI approaches to explore and demonstrate their consistency across centres.


Assuntos
Comportamento Aditivo/prevenção & controle , Preparações Farmacêuticas/administração & dosagem , Adulto , Pesquisa Biomédica/métodos , Encéfalo/efeitos dos fármacos , Estudos de Casos e Controles , Emoções/efeitos dos fármacos , Feminino , Humanos , Comportamento Impulsivo/efeitos dos fármacos , Funções Verossimilhança , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Motivação/efeitos dos fármacos , Recompensa , Prevenção Secundária/métodos , Adulto Jovem
11.
Ann Rev Mar Sci ; 8: 95-123, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26331898

RESUMO

We review the physics of near-inertial waves (NIWs) in the ocean and the observations, theory, and models that have provided our present knowledge. NIWs appear nearly everywhere in the ocean as a spectral peak at and just above the local inertial period f, and the longest vertical wavelengths can propagate at least hundreds of kilometers toward the equator from their source regions; shorter vertical wavelengths do not travel as far and do not contain as much energy, but lead to turbulent mixing owing to their high shear. NIWs are generated by a variety of mechanisms, including the wind, nonlinear interactions with waves of other frequencies, lee waves over bottom topography, and geostrophic adjustment; the partition among these is not known, although the wind is likely the most important. NIWs likely interact strongly with mesoscale and submesoscale motions, in ways that are just beginning to be understood.


Assuntos
Gravitação , Água do Mar/química , Movimentos da Água , Vento
13.
Nature ; 521(7550): 65-9, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25951285

RESUMO

Internal gravity waves, the subsurface analogue of the familiar surface gravity waves that break on beaches, are ubiquitous in the ocean. Because of their strong vertical and horizontal currents, and the turbulent mixing caused by their breaking, they affect a panoply of ocean processes, such as the supply of nutrients for photosynthesis, sediment and pollutant transport and acoustic transmission; they also pose hazards for man-made structures in the ocean. Generated primarily by the wind and the tides, internal waves can travel thousands of kilometres from their sources before breaking, making it challenging to observe them and to include them in numerical climate models, which are sensitive to their effects. For over a decade, studies have targeted the South China Sea, where the oceans' most powerful known internal waves are generated in the Luzon Strait and steepen dramatically as they propagate west. Confusion has persisted regarding their mechanism of generation, variability and energy budget, however, owing to the lack of in situ data from the Luzon Strait, where extreme flow conditions make measurements difficult. Here we use new observations and numerical models to (1) show that the waves begin as sinusoidal disturbances rather than arising from sharp hydraulic phenomena, (2) reveal the existence of >200-metre-high breaking internal waves in the region of generation that give rise to turbulence levels >10,000 times that in the open ocean, (3) determine that the Kuroshio western boundary current noticeably refracts the internal wave field emanating from the Luzon Strait, and (4) demonstrate a factor-of-two agreement between modelled and observed energy fluxes, which allows us to produce an observationally supported energy budget of the region. Together, these findings give a cradle-to-grave picture of internal waves on a basin scale, which will support further improvements of their representation in numerical climate predictions.

14.
Front Psychol ; 4: 806, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24312060

RESUMO

One of the well-documented concerns confronting scholarly discourse about meditation is the plethora of semantic constructs and the lack of a unified definition and taxonomy. In recent years there have been several notable attempts to formulate new lexicons in order to define and categorize meditation methods. While these constructs have been useful and have encountered varying degrees of acceptance, they have also been subject to misinterpretation and debate, leaving the field devoid of a consensual paradigm. This paper attempts to influence this ongoing discussion by proposing two new models which hold the potential for enhanced scientific reliability and acceptance. Regarding the quest for a universally acceptable taxonomy, we suggest a paradigm shift away from the norm of fabricatIng new terminology from a first-person perspective. As an alternative, we propose a new taxonomic system based on the historically well-established and commonly accepted third-person paradigm of Affect and Cognition, borrowed, in part, from the psychological and cognitive sciences. With regard to the elusive definitional problem, we propose a model of meditation which clearly distinguishes "method" from "state" and is conceptualized as a dynamic process which is inclusive of six related but distinct stages. The overall goal is to provide researchers with a reliable nomenclature with which to categorize and classify diverse meditation methods, and a conceptual framework which can provide direction for their research and a theoretical basis for their findings.

15.
Nature ; 500(7460): 64-7, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23883934

RESUMO

Sea surface temperature (SST) is a critical control on the atmosphere, and numerical models of atmosphere-ocean circulation emphasize its accurate prediction. Yet many models demonstrate large, systematic biases in simulated SST in the equatorial 'cold tongues' (expansive regions of net heat uptake from the atmosphere) of the Atlantic and Pacific oceans, particularly with regard to a central but little-understood feature of tropical oceans: a strong seasonal cycle. The biases may be related to the inability of models to constrain turbulent mixing realistically, given that turbulent mixing, combined with seasonal variations in atmospheric heating, determines SST. In temperate oceans, the seasonal SST cycle is clearly related to varying solar heating; in the tropics, however, SSTs vary seasonally in the absence of similar variations in solar inputs. Turbulent mixing has long been a likely explanation, but firm, long-term observational evidence has been absent. Here we show the existence of a distinctive seasonal cycle of subsurface cooling via mixing in the equatorial Pacific cold tongue, using multi-year measurements of turbulence in the ocean. In boreal spring, SST rises by 2 kelvin when heating of the upper ocean by the atmosphere exceeds cooling by mixing from below. In boreal summer, SST decreases because cooling from below exceeds heating from above. When the effects of lateral advection are considered, the magnitude of summer cooling via mixing (4 kelvin per month) is equivalent to that required to counter the heating terms. These results provide quantitative assessment of how mixing varies on timescales longer than a few weeks, clearly showing its controlling influence on seasonal cooling of SST in a critical oceanic regime.


Assuntos
Temperatura Baixa , Estações do Ano , Água do Mar , Movimentos da Água , Atmosfera , El Niño Oscilação Sul , Modelos Teóricos , Oceano Pacífico , Água do Mar/análise
16.
Nature ; 437(7057): 400-3, 2005 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16163354

RESUMO

Satellite images have long revealed the surface expression of large amplitude internal waves that propagate along density interfaces beneath the sea surface. Internal waves are typically the most energetic high-frequency events in the coastal ocean, displacing water parcels by up to 100 m and generating strong currents and turbulence that mix nutrients into near-surface waters for biological utilization. While internal waves are known to be generated by tidal currents over ocean-bottom topography, they have also been observed frequently in the absence of any apparent tide-topography interactions. Here we present repeated measurements of velocity, density and acoustic backscatter across the Columbia River plume front. These show how internal waves can be generated from a river plume that flows as a gravity current into the coastal ocean. We find that the convergence of horizontal velocities at the plume front causes frontal growth and subsequent displacement downward of near-surface waters. Individual freely propagating waves are released from the river plume front when the front's propagation speed decreases below the wave speed in the water ahead of it. This mechanism generates internal waves of similar amplitude and steepness as internal waves from tide-topography interactions observed elsewhere, and is therefore important to the understanding of coastal ocean mixing.

17.
Science ; 301(5631): 355-7, 2003 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-12869758

RESUMO

The cascade from tides to turbulence has been hypothesized to serve as a major energy pathway for ocean mixing. We investigated this cascade along the Hawaiian Ridge using observations and numerical models. A divergence of internal tidal energy flux observed at the ridge agrees with the predictions of internal tide models. Large internal tidal waves with peak-to-peak amplitudes of up to 300 meters occur on the ridge. Internal-wave energy is enhanced, and turbulent dissipation in the region near the ridge is 10 times larger than open-ocean values. Given these major elements in the tides-to-turbulence cascade, an energy budget approaches closure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...