Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35902004

RESUMO

Intertidal crustaceans like Carcinus maenas shift between an osmoconforming and osmoregulating state when inhabiting full-strength seawater and dilute environments, respectively. While the bodily fluids and environment of marine osmoconformers are approximately isosmotic, osmoregulating crabs inhabiting dilute environments maintain their bodily fluid osmolality above that of their environment by actively absorbing and retaining osmolytes (e.g., Na+, Cl-, urea) while eliminating excess water. Few studies have investigated the role of aquaporins (AQPs) in the osmoregulatory organs of crustaceans, especially within brachyuran species. In the current study, three different aquaporins were identified within a transcriptome of C. maenas, including a classical AQP (CmAQP1), an aquaglyceroporin (CmGLP1), and a big-brain protein (CmBIB1), all of which are expressed in the gills and the antennal glands. Functional expression of these aquaporins confirmed water transport capabilities for CmAQP1, CmGLP1, but not for CmBIB1, while CmGLP1 also transported urea. Higher relative CmAQP1 mRNA expression within tissues of osmoconforming crabs suggests the apical/sub-apically localized channel attenuates osmotic gradients created by non-osmoregulatory processes while its downregulation in dilute media reduces the water permeability of tissues to facilitate osmoregulation. Although hemolymph urea concentrations rose upon exposure to brackish water, urea was not detected in the final urine. Due to its urea-transport capabilities, CmGLP1 is hypothesized to be involved in a urea retention mechanism believed to be involved in the production of diluted urine. Overall, these results suggest that AQPs are involved in osmoregulation and provide a basis for future mechanistic studies investigating the role of AQPs in volume regulation in crustaceans.


Assuntos
Aquaporinas , Braquiúros , Animais , Aquaporinas/genética , Braquiúros/fisiologia , Brânquias/metabolismo , Osmorregulação/fisiologia , Água/metabolismo , Equilíbrio Hidroeletrolítico/fisiologia
2.
Aquat Toxicol ; 249: 106225, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35724523

RESUMO

Due to increasing anthropogenic impacts, heatwaves and prolonged exposure to elevated concentrations of ammonia (HEA) may occur in aquatic environments as a single stressor or a combination thereof, potentially impacting the physiology of exposed animals. In the current study, common water fleas Daphnia magna were exposed for one week to either a 5°C increase in temperature, an increase of 300 µmol l-1 total environmental ammonia, or to both of these stressors simultaneously. Exposure to elevated temperature caused a decrease in MO2, ammonia excretion rates, a downregulation of mRNA coding for key Krebs cycle enzymes and the energy consuming Na+/K+-ATPase and V-type H+-ATPase, as well as the energy distributing crustacean hyperglycemic hormone Rh-protein. High environmental ammonia inflicted a lesser inhibitory effect on the energy metabolism of Daphnia, but initiated ammonia detoxification processes via urea synthesis evident by elevated urea excretion rates and a mRNA upregulation of arginase. Effects observed under the combined stressors resembled largely the effects seen after acclimation to elevated temperature alone, potentially due to the animals' capability to efficiently detoxify critical ammonia loads. The observed physiological effects and potential threats of the environmental stressor are discussed in detail.


Assuntos
Amônia , Poluentes Químicos da Água , Amônia/metabolismo , Animais , Daphnia/genética , Daphnia/metabolismo , Metabolismo Energético , Brânquias , Nitrogênio/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ureia/metabolismo , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...