Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 9: 915, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867826

RESUMO

Non-tuberculous mycobacteria (NTM) cause pulmonary infections in patients with structural lung damage, impaired immunity, or other risk factors. Delivering antibiotics to the sites of these infections is a major hurdle of therapy because pulmonary NTM infections can persist in biofilms or as intracellular infections within macrophages. Inhaled treatments can improve antibiotic delivery into the lungs, but efficient nebulization delivery, distribution throughout the lungs, and penetration into biofilms and macrophages are considerable challenges for this approach. Therefore, we developed amikacin liposome inhalation suspension (ALIS) to overcome these challenges. Nebulization of ALIS has been shown to provide particles within the respirable size range that distribute to both central and peripheral lung compartments in humans. The in vitro and in vivo efficacy of ALIS against NTM has been demonstrated previously. The key mechanistic questions are whether ALIS penetrates NTM biofilms and enhances amikacin uptake into macrophages. We found that ALIS effectively penetrated throughout NTM biofilms and concentration-dependently reduced the number of viable mycobacteria. Additionally, we found that ALIS improved amikacin uptake by ∼4-fold into cultured macrophages compared with free amikacin. In rats, inhaled ALIS increased amikacin concentrations in pulmonary macrophages by 5- to 8-fold at 2, 6, and 24 h post-dose and retained more amikacin at 24 h in airways and lung tissue relative to inhaled free amikacin. Compared to intravenous free amikacin, a standard-of-care therapy for refractory and severe NTM lung disease, ALIS increased the mean area under the concentration-time curve in lung tissue, airways, and macrophages by 42-, 69-, and 274-fold. These data demonstrate that ALIS effectively penetrates NTM biofilms, enhances amikacin uptake into macrophages, both in vitro and in vivo, and retains amikacin within airways and lung tissue. An ongoing Phase III trial, adding ALIS to guideline based therapy, met its primary endpoint of culture conversion by month 6. ALIS represents a promising new treatment approach for patients with refractory NTM lung disease.

2.
Exp Biol Med (Maywood) ; 237(9): 1007-17, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22946088

RESUMO

Stearoyl-CoA desaturase-1 (SCD1), the main enzyme that converts saturated fatty acids into monounsaturated fatty acids, is a key factor in the mechanisms of cancer cell proliferation, survival and tumorigenesis. Evidence indicates that SCD1 activity regulates these events in part by targeting the phosphatidylinositol-3 phosphate kinase/Akt and Ras/extracellular signal-regulated kinase (ERK) pathways, but the molecular mechanisms remain unknown. We now show that in H460 lung cancer cells, the suppression of SCD activity with CVT-11127, a specific small molecule SCD inhibitor, impairs the ligand-induced phosphorylation of epidermal growth factor (EGF) receptor, causing the inactivation of its downstream targets Akt, ERK and mammalian target of rapamycin. Importantly, the mitogenic response to EGF was markedly defective in SCD-depleted cancer cells. The inactivation of EGF receptor (EGFR) promoted by SCD inhibition may be caused by perturbations in the lipid microenvironment surrounding the receptor, since we detected significant alterations in the lateral mobility of plasma lipid microdomains. Finally, incubation of lung cancer cells with SCD blockers potentiated the antigrowth effect of gefitinib, an EGFR inhibitor employed in cancer treatment. Altogether, our data indicate that SCD activity may control cancer cell metabolism, proliferation and survival by modulating the EGFR→Akt/ERK signaling platforms. Our studies also suggest a value for SCD inhibitors as novel pharmacological agents in lung cancer, one of the most common and lethal forms of cancer for which therapeutic options remain very limited.


Assuntos
Receptores ErbB/metabolismo , Neoplasias Pulmonares/metabolismo , Estearoil-CoA Dessaturase/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Transformação Celular Neoplásica , Receptores ErbB/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Gefitinibe , Humanos , Neoplasias Pulmonares/enzimologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinazolinas/farmacologia , Estearoil-CoA Dessaturase/antagonistas & inibidores , Serina-Treonina Quinases TOR/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA