Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Neoplasia ; 20(9): 917-929, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30121008

RESUMO

Current treatment strategies provide minimal results for patients with castration-resistant prostate cancer (CRPC). Attempts to target the androgen receptor have shown promise, but resistance ultimately develops, often due to androgen receptor reactivation. Understanding mechanisms of resistance, including androgen receptor reactivation, is crucial for development of more efficacious CRPC therapies. Here, we report that the RON receptor tyrosine kinase is highly expressed in the majority of human hormone-refractory prostate cancers. Further, we show that exogenous expression of RON in human and murine prostate cancer cells circumvents sensitivity to androgen deprivation and promotes prostate cancer cell growth in both in vivo and in vitro settings. Conversely, RON loss induces sensitivity of CRPC cells to androgen deprivation. Mechanistically, we demonstrate that RON overexpression leads to activation of multiple oncogenic transcription factors (namely, ß-catenin and NF-κB), which are sufficient to drive androgen receptor nuclear localization and activation of AR responsive genes under conditions of androgen deprivation and support castration-resistant growth. In total, this study demonstrates the functional significance of RON during prostate cancer progression and provides a strong rationale for targeting RON signaling in prostate cancer as a means to limit resistance to androgen deprivation therapy.


Assuntos
Androgênios/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Receptores Proteína Tirosina Quinases/genética , Animais , Apoptose , Biomarcadores , Proliferação de Células , Humanos , Imuno-Histoquímica , Masculino , Camundongos , NF-kappa B/metabolismo , Neoplasias da Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Androgênicos/metabolismo , Transdução de Sinais , Regulador Transcricional ERG/metabolismo , beta Catenina/metabolismo
2.
JCI Insight ; 1(16): e87270, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27734028

RESUMO

Lymphangioleiomyomatosis (LAM) is a rare lung disease of women that leads to progressive cyst formation and accelerated loss of pulmonary function. Neoplastic smooth muscle cells from an unknown source metastasize to the lung and drive destructive remodeling. Given the role of NK cells in immune surveillance, we postulated that NK cell activating receptors and their cognate ligands are involved in LAM pathogenesis. We found that ligands for the NKG2D activating receptor UL-16 binding protein 2 (ULBP2) and ULBP3 are localized in cystic LAM lesions and pulmonary nodules. We found elevated soluble serum ULBP2 (mean = 575 pg/ml ± 142) in 50 of 100 subjects and ULBP3 in 30 of 100 (mean = 8,300 pg/ml ± 1,515) subjects. LAM patients had fewer circulating NKG2D+ NK cells and decreased NKG2D surface expression. Lung function decline was associated with soluble NKG2D ligand (sNKG2DL) detection. The greatest rate of decline forced expiratory volume in 1 second (FEV1, -124 ± 30 ml/year) in the 48 months after enrollment (NHLBI LAM Registry) occurred in patients expressing both ULBP2 and ULBP3, whereas patients with undetectable sNKG2DL levels had the lowest rate of FEV1 decline (-32.7 ± 10 ml/year). These data suggest a role for NK cells, sNKG2DL, and the innate immune system in LAM pathogenesis.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Células Matadoras Naturais/imunologia , Linfangioleiomiomatose/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Adulto , Feminino , Proteínas Ligadas por GPI/metabolismo , Humanos , Pulmão/metabolismo , Linfangioleiomiomatose/imunologia , Pessoa de Meia-Idade
3.
Oncotarget ; 5(14): 5547-58, 2014 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-24980820

RESUMO

The Ron receptor is deregulated in a variety of cancers. Hepatocyte growth factor-like protein (HGFL) is the ligand for Ron and is constitutively secreted from hepatocytes into the circulation. While a few recent reports have emerged analyzing ectopic HGFL overexpression of in cancer cells, no studies have examined host-produced HGFL in tumorigenesis. To examine HGFL function in prostate cancer, the TRAMP mouse model, which is predisposed to develop prostate tumors, was utilized. Prostate tumors from TRAMP mice exhibit elevated levels of HGFL, which correlated with upregulation in human prostate cancer. To directly implicate HGFL in prostate tumorigenesis, TRAMP mice deficient in HGFL (HGFL-/-TRAMP+) were generated. HGFL-/- TRAMP+ mice developed significantly smaller prostate tumors compared to controls. Analysis of HGFL-/- tumors revealed reduced tumor vascularization. No differences in cancer cell proliferation were detected between HGFL-/- TRAMP+ and HGFL+/+ TRAMP+ mice. However, a significant increase in cancer cell death was detected in HGFL-/- TRAMP+ prostates which correlated with decreased pro-survival targets. In vitro analysis demonstrated robust STAT3 activation resulting in Bcl2-dependent survival following treatment of prostate cancer cells with HGFL. These data document a novel function for endogenous HGFL in prostate cancer by imparting a critical survival signal to tumor cells.


Assuntos
Fator de Crescimento de Hepatócito/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas/metabolismo , Animais , Proliferação de Células/fisiologia , Transformação Celular Neoplásica , Modelos Animais de Doenças , Fator de Crescimento de Hepatócito/deficiência , Fator de Crescimento de Hepatócito/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Neoplasias da Próstata/irrigação sanguínea , Neoplasias da Próstata/genética , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...