Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 21810, 2023 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071323

RESUMO

The scale and duration of neutralizing antibody responses targeting SARS-CoV-2 viral variants represents a critically important serological parameter that predicts protective immunity for COVID-19. In this study, we describe the development and employment of a new functional assay that measures neutralizing antibodies for SARS-CoV-2 and present longitudinal data illustrating the impact of age, sex and comorbidities on the kinetics and strength of vaccine-induced antibody responses for key variants in an Asian volunteer cohort. We also present an accurate quantitation of serological responses for SARS-CoV-2 that exploits a unique set of in-house, recombinant human monoclonal antibodies targeting the viral Spike and nucleocapsid proteins and demonstrate a reduction in neutralizing antibody titres across all groups 6 months post-vaccination. We also observe a marked reduction in the serological binding activity and neutralizing responses targeting recently newly emerged Omicron variants including XBB 1.5 and highlight a significant increase in cross-protective neutralizing antibody responses following a third dose (boost) of vaccine. These data illustrate how key virological factors such as immune escape mutations combined with host demographic factors such as age and sex of the vaccinated individual influence the strength and duration of cross-protective serological immunity for COVID-19.


Assuntos
COVID-19 , Vacinas , Humanos , SARS-CoV-2 , Anticorpos Amplamente Neutralizantes , COVID-19/prevenção & controle , Anticorpos Neutralizantes , Emprego , Vacinação , Anticorpos Antivirais
2.
Clin Infect Dis ; 74(10): 1722-1728, 2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-34358292

RESUMO

BACKGROUND: Multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) superspreading events suggest that aerosols play an important role in driving the coronavirus disease 2019 (COVID-19) pandemic. To better understand how airborne SARS-CoV-2 transmission occurs, we sought to determine viral loads within coarse (>5 µm) and fine (≤5 µm) respiratory aerosols produced when breathing, talking, and singing. METHODS: Using a G-II exhaled breath collector, we measured viral RNA in coarse and fine respiratory aerosols emitted by COVID-19 patients during 30 minutes of breathing, 15 minutes of talking, and 15 minutes of singing. RESULTS: Thirteen participants (59%) emitted detectable levels of SARS-CoV-2 RNA in respiratory aerosols, including 3 asymptomatic and 1 presymptomatic patient. Viral loads ranged from 63-5821 N gene copies per expiratory activity per participant, with high person-to-person variation. Patients earlier in illness were more likely to emit detectable RNA. Two participants, sampled on day 3 of illness, accounted for 52% of total viral load. Overall, 94% of SARS-CoV-2 RNA copies were emitted by talking and singing. Interestingly, 7 participants emitted more virus from talking than singing. Overall, fine aerosols constituted 85% of the viral load detected in our study. Virus cultures were negative. CONCLUSIONS: Fine aerosols produced by talking and singing contain more SARS-CoV-2 copies than coarse aerosols and may play a significant role in SARS-CoV-2 transmission. Exposure to fine aerosols, especially indoors, should be mitigated. Isolating viable SARS-CoV-2 from respiratory aerosol samples remains challenging; whether this can be more easily accomplished for emerging SARS-CoV-2 variants is an urgent enquiry necessitating larger-scale studies.


Assuntos
COVID-19 , Canto , Aerossóis , Humanos , RNA Viral/genética , Aerossóis e Gotículas Respiratórios , SARS-CoV-2 , Carga Viral
3.
Commun Med (Lond) ; 1: 46, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35602218

RESUMO

Background: Neutralizing antibodies (NAbs) prevent pathogens from infecting host cells. Detection of SARS-CoV-2 NAbs is critical to evaluate herd immunity and monitor vaccine efficacy against SARS-CoV-2, the virus that causes COVID-19. All currently available NAb tests are lab-based and time-intensive. Method: We develop a 10 min cellulose pull-down test to detect NAbs against SARS-CoV-2 from human plasma. The test evaluates the ability of antibodies to disrupt ACE2 receptor-RBD complex formation. The simple, portable, and rapid testing process relies on two key technologies: (i) the vertical-flow paper-based assay format and (ii) the rapid interaction of cellulose binding domain to cellulose paper. Results: Here we show the construction of a cellulose-based vertical-flow test. The developed test gives above 80% sensitivity and specificity and up to 93% accuracy as compared to two current lab-based methods using COVID-19 convalescent plasma. Conclusions: A rapid 10 min cellulose based test has been developed for detection of NAb against SARS-CoV-2. The test demonstrates comparable performance to the lab-based tests and can be used at Point-of-Care. Importantly, the approach used for this test can be easily extended to test RBD variants or to evaluate NAbs against other pathogens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...