Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37058390

RESUMO

OBJECTIVE: The driver fatigue detection using multi-channel electroencephalography (EEG) has been extensively addressed in the literature. However, the employment of a single prefrontal EEG channel should be prioritized as it provides users with more comfort. Furthermore, eye blinks from such channel can be analyzed as the complementary information. Here, we present a new driver fatigue detection method based on simultaneous EEG and eye blinks analysis using an Fp1 EEG channel. METHODS: First, the moving standard deviation algorithm identifies eye blink intervals (EBIs) to extract blink-related features. Second, the discrete wavelet transform filters the EBIs from the EEG signal. Third, the filtered EEG signal is decomposed into sub-bands, and various linear and nonlinear features are extracted. Finally, the prominent features are selected by the neighbourhood components analysis and fed to a classifier to discriminate between fatigue and alert driving. In this paper, two different databases are investigated. The first one is used for parameters' tuning of proposed method for the eye blink detection and filtering, nonlinear EEG measures, and feature selection. The second one is solely used for testing the robustness of the tuned parameters. MAIN RESULTS: The comparison between the obtained results from both databases by the AdaBoost classifier in terms of sensitivity (90.2% vs. 87.4%), specificity (87.7% vs. 85.5%), and accuracy (88.4% vs. 86.8%) indicates the reliability of the proposed method for the driver fatigue detection. SIGNIFICANCE: Considering the existence of commercial single prefrontal channel EEG headbands, the proposed method can be used to detect the driver fatigue in real-world scenarios.


Assuntos
Eletroencefalografia , Análise de Ondaletas , Humanos , Reprodutibilidade dos Testes , Eletroencefalografia/métodos , Algoritmos , Bases de Dados Factuais
2.
Int J Biol Macromol ; 190: 61-71, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34411618

RESUMO

In current decades, the fabrication and design of magnetic biocatalysts have been advancing as green catalysts. Hence, in this paper, we use the apple seed starch to create indium(III) immobilized on Fe3O4@apple seed starch core-shell magnetic nanocatalyst (Fe3O4@apple seed starch-In(III)). The prepared catalyst was identified and evaluated with several analysis techniques. The application of this catalyst in the synthesis of isochromeno[4,3-c]pyrazole-5(1H)-one derivates under solvent-free conditions was a new approach with high efficiency. Due to the magnetic nature of the catalyst, the catalyst separation from the reaction medium is easy, and it is reusable for five runs without significant change in catalytic activity. The fabrication of this catalyst is based on green chemistry principles and is more economical and stable than other catalysts in the synthesis of pyrazole-fused isocoumarins heterocyclic compounds.


Assuntos
Biocatálise , Compostos Férricos/química , Índio/química , Isocumarinas/química , Malus/química , Pirazóis/síntese química , Sementes/química , Amido/química , Espectroscopia Fotoeletrônica , Pirazóis/química , Sementes/ultraestrutura , Solventes/química , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Amido/ultraestrutura , Termogravimetria , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...