Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 11889, 2024 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789558

RESUMO

Pediatricians use sevoflurane due to its fast action and short recovery time. However, studies have shown that repeated exposure to anesthesia can affect learning and memory. Melatonin, an indole-type neuroendocrine hormone, has significant anti-inflammatory, and neuroprotective properties. Melatonin's impact on cognitive behavior in sevoflurane-anesthetized males and females of the Wistar rats during preadolescence was examined in this research. The cognitive function was evaluated by shuttle box and morris water maze tests, while interleukin-10, Catalase (CAT), Malondialdehyde (MDA), and Tumor Necrosis Factor-α (TNF-α) were evaluated using ELISA kits. The expression levels of the apoptosis-linked proteins, Bax, Bcl-2, and caspase-3, were determined using the western blotting technique. The learning and memory latencies of the rats were more significant in the sevoflurane groups than in the control group; however, the latencies were significantly shorter in the sevoflurane and melatonin groups than in the control group. The levels of MDA, TNF-α, Bax, and caspase-3 were significantly higher in the sevoflurane groups than in the control group. We also found that the levels of CAT and Bcl-2 were significantly reduced in the sevoflurane groups compared to the control group. Increasing levels of CAT, Bcl-2, and decreasing levels of MDA, TNF-α, Bax, and caspase-3 in response to melatonin indicate a possible contribution to the recovery from the sevoflurane impairment. Melatonin shows neuroprotective effects in male and female rats with sevoflurane-induced cognitive impairment. This suggests melatonin could be a valuable treatment for learning and memory deficits resulting from repeated exposure to sevoflurane, possibly by controlling apoptosis, oxidative stress, and inflammation.


Assuntos
Melatonina , Ratos Wistar , Sevoflurano , Animais , Sevoflurano/efeitos adversos , Sevoflurano/farmacologia , Melatonina/farmacologia , Masculino , Feminino , Ratos , Apoptose/efeitos dos fármacos , Anestésicos Inalatórios/efeitos adversos , Aprendizagem em Labirinto/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Memória/efeitos dos fármacos , Malondialdeído/metabolismo
2.
IBRO Neurosci Rep ; 16: 211-223, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38352700

RESUMO

In pre-adolescence, repeated anesthesia may be required for therapeutic interventions. Adult cognitive and neurobehavioral problems may result from preadolescent exposure to anesthetics. This study examined the long-term morphological and functional effects of repeated sub-anesthetic doses of ketamine exposure on male and female rat adults during pre-adolescence. Weaned 48 pre-adolescent rats from eight mothers and were randomly divided into four equal groups: control group and the ketamine group of males and females (20 mg/kg daily for 14 days); then animals received care for 20-30 days. Repeated exposure to sub-anesthetic doses of ketamine on cognitive functions was assayed using Social discrimination and novel object tests. Besides, an elevated plus maze and fear conditioning apparatus were utilized to determine exploratory and anxiety-like behavior in adults. Toluidine blue stain was used to evaluate the number of dead neurons in the hippocampus, and the effects of ketamine on synaptic plasticity were compared in the perforant pathway of the CA1 of the hippocampus. Our study indicates that repeated exposure to sub-anesthetic doses of ketamine during pre-adolescence can result in neurobehavioral impairment in male and female rat adulthood but does not affect anxiety-like behavior. We found a significant quantifiable increase in dark neurons. Recorded electrophysiologically, repeat sub-anesthetic doses of ketamine resulted in hampering long-term potentiation and pair pulse in male adult animals. Our results showed that repeated exposure to sub-anesthetic doses of ketamine during pre-adolescence can induce hippocampus and neuroplasticity changes later in adulthood. This study opens up a new line of inquiry into potential adverse outcomes of repeated anesthesia exposure in pre-adolescent rats.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...