Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE J Solid-State Circuits ; 57(4): 1061-1074, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36186085

RESUMO

Miniaturized and wireless near-infrared (NIR) based neural recorders with optical powering and data telemetry have been introduced as a promising approach for safe long-term monitoring with the smallest physical dimension among state-of-the-art standalone recorders. However, a main challenge for the NIR based neural recording ICs is to maintain robust operation in the presence of light-induced parasitic short circuit current from junction diodes. This is especially true when the signal currents are kept small to reduce power consumption. In this work, we present a light-tolerant and low-power neural recording IC for motor prediction that can fully function in up to 300 µW/mm2 of light exposure. It achieves best-in-class power consumption of 0.57 µW at 38° C with a 4.1 NEF pseudo-resistorless amplifier, an on-chip neural feature extractor, and individual mote level gain control. Applying the 20-channel pre-recorded neural signals of a monkey, the IC predicts finger position and velocity with correlation coefficient up to 0.870 and 0.569, respectively, with individual mote level gain control enabled. In addition, wireless measurement is demonstrated through optical power and data telemetry using a custom PV/LED GaAs chip wire bonded to the proposed IC.

2.
Neuron ; 109(19): 3164-3177.e8, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34499856

RESUMO

Modern brain-machine interfaces can return function to people with paralysis, but current upper extremity brain-machine interfaces are unable to reproduce control of individuated finger movements. Here, for the first time, we present a real-time, high-speed, linear brain-machine interface in nonhuman primates that utilizes intracortical neural signals to bridge this gap. We created a non-prehensile task that systematically individuates two finger groups, the index finger and the middle-ring-small fingers combined. During online brain control, the ReFIT Kalman filter could predict individuated finger group movements with high performance. Next, training ridge regression decoders with individual movements was sufficient to predict untrained combined movements and vice versa. Finally, we compared the postural and movement tuning of finger-related cortical activity to find that individual cortical units simultaneously encode multiple behavioral dimensions. Our results suggest that linear decoders may be sufficient for brain-machine interfaces to execute high-dimensional tasks with the performance levels required for naturalistic neural prostheses.


Assuntos
Interfaces Cérebro-Computador , Dedos/fisiologia , Movimento/fisiologia , Próteses Neurais , Algoritmos , Animais , Fenômenos Biomecânicos , Eletrodos Implantados , Dedos/inervação , Previsões , Modelos Lineares , Macaca mulatta , Masculino , Microeletrodos , Córtex Motor/fisiologia , Postura/fisiologia , Desenho de Prótese , Desempenho Psicomotor
3.
ACS Photonics ; 8(5): 1430-1438, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34368396

RESUMO

Arrays of floating neural sensors with high channel count that cover an area of square centimeters and larger would be transformative for neural engineering and brain-machine interfaces. Meeting the power and wireless data communications requirements within the size constraints for each neural sensor has been elusive due to the need to incorporate sensing, computing, communications, and power functionality in a package of approximately 100 micrometers on a side. In this work, we demonstrate a near infrared optical power and data communication link for a neural recording system that satisfies size requirements to achieve dense arrays and power requirements to prevent tissue heating. The optical link is demonstrated using an integrated optoelectronic device consisting of a tandem photovoltaic cell and microscale light emitting diode. End-to-end functionality of a wireless neural link within system constraints is demonstrated using a pre-recorded neural signal between a self-powered CMOS integrated circuit and single photon avalanche photodiode.

4.
Int Rev Neurobiol ; 159: 153-186, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34446245

RESUMO

One of the most exciting advances to emerge in neural interface technologies has been the development of real-time brain-machine interface (BMI) neuroprosthetic devices to restore upper extremity function. BMI neuroprostheses, made possible by synergistic advances in neural recording technologies, high-speed computation and signal processing, and neuroscience, have permitted the restoration of volitional movement to patients suffering the loss of upper-extremity function. In this chapter, we review the scientific and technological advances underlying these remarkable devices. After presenting an introduction to the current state of the field, we provide an accessible technical discussion of the two fundamental requirements of a successful neuroprosthesis: signal extraction from the brain and signal decoding that results in robust prosthetic control. We close with a presentation of emerging technologies that are likely to substantially advance the field.


Assuntos
Interfaces Cérebro-Computador , Extremidade Superior , Humanos , Recuperação de Função Fisiológica , Extremidade Superior/fisiologia
5.
eNeuro ; 8(4)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34135005

RESUMO

Nitrous oxide (N2O) is a hypnotic gas with antidepressant and psychedelic properties at subanesthetic concentrations. Despite long-standing clinical use, there is insufficient understanding of its effect on neural dynamics and cortical processing, which is important for mechanistic understanding of its therapeutic effects. We administered subanesthetic (70%), inhaled N2O and studied the dynamic changes of spiking rate, spectral content, and somatosensory information representation in primary motor cortex (M1) in two male rhesus macaques implanted with Utah microelectrode arrays in the hand area of M1. The average sorted multiunit spiking rate in M1 increased from 8.1 ± 0.99 to 10.6 ± 1.3 Hz in Monkey W (p < 0.001) and from 5.6 ± 0.87 to 7.0 ± 1.1 Hz in Monkey N (p = 0.003). Power spectral densities increased in beta- and gamma-band power. To evaluate somatosensory content in M1 as a surrogate of information transfer, fingers were lightly brushed and classified using a naive Bayes classifier. In both monkeys, the proportion of correctly classified fingers dropped from 0.50 ± 0.06 before N2O inhalation to 0.34 ± 0.03 during N2O inhalation (p = 0.018), although some fingers continued to be correctly classified (p = 0.005). The decrease in correct classifications corresponded to decreased modulation depth for the population (p = 0.005) and fewer modulated units (p = 0.046). However, the increased single-unit firing rate was not correlated with its modulation depth (R2 < 0.001, p = 0.93). These data suggest that N2O degrades information transfer, although no clear relationship was found between neuronal tuning and N2O-induced changes in firing rate.


Assuntos
Córtex Motor , Óxido Nitroso , Animais , Teorema de Bayes , Macaca mulatta , Masculino , Neurônios
6.
Symp VLSI Circuits ; 20212021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35284198

RESUMO

A key challenge for near-infrared (NIR) powered neural recording ICs is to maintain robust operation in the presence of parasitic short circuit current from junction diodes when exposed to light. This is especially so when intentional currents are kept small to reduce power consumption. We present a neural recording IC that is tolerant up to 300 µW/mm2 light exposure (above tissue limit) and consumes 0.57 µW at 38°C, making it lowest power among standalone motes while incorporating on-chip feature extraction and individual gain control.

7.
Nat Biomed Eng ; 4(10): 973-983, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32719512

RESUMO

The large power requirement of current brain-machine interfaces is a major hindrance to their clinical translation. In basic behavioural tasks, the downsampled magnitude of the 300-1,000 Hz band of spiking activity can predict movement similarly to the threshold crossing rate (TCR) at 30 kilo-samples per second. However, the relationship between such a spiking-band power (SBP) and neural activity remains unclear, as does the capability of using the SBP to decode complicated behaviour. By using simulations of recordings of neural activity, here we show that the SBP is dominated by local single-unit spikes with spatial specificity comparable to or better than that of the TCR, and that the SBP correlates better with the firing rates of lower signal-to-noise-ratio units than the TCR. With non-human primates, in an online task involving the one-dimensional decoding of the movement of finger groups and in an offline two-dimensional cursor-control task, the SBP performed equally well or better than the TCR. The SBP may enhance the decoding performance of neural interfaces while enabling substantial cuts in power consumption.


Assuntos
Interfaces Cérebro-Computador , Córtex Motor/fisiologia , Neurônios/fisiologia , Animais , Dedos , Macaca mulatta , Masculino , Microeletrodos , Próteses e Implantes , Ratos Long-Evans , Razão Sinal-Ruído
8.
Muscle Nerve ; 61(6): 708-718, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32413247

RESUMO

The loss of upper limb motor function can have a devastating effect on people's lives. To restore upper limb control and functionality, researchers and clinicians have developed interfaces to interact directly with the human body's motor system. In this invited review, we aim to provide details on the peripheral nerve interfaces and brain-machine interfaces that have been developed in the past 30 years for upper extremity control, and we highlight the challenges that still remain to transition the technology into the clinical market. The findings show that peripheral nerve interfaces and brain-machine interfaces have many similar characteristics that enable them to be concurrently developed. Decoding neural information from both interfaces may lead to novel physiological models that may one day fully restore upper limb motor function for a growing patient population.


Assuntos
Amputados/reabilitação , Pesquisa Biomédica/tendências , Robótica/tendências , Traumatismos da Medula Espinal/reabilitação , Extremidade Superior/fisiologia , Pesquisa Biomédica/métodos , Interfaces Cérebro-Computador/tendências , Previsões , Humanos , Robótica/métodos , Traumatismos da Medula Espinal/fisiopatologia
10.
Bioelectron Med ; 5: 3, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32232094

RESUMO

BACKGROUND: The loss of motor functions resulting from spinal cord injury can have devastating implications on the quality of one's life. Functional electrical stimulation has been used to help restore mobility, however, current functional electrical stimulation (FES) systems require residual movements to control stimulation patterns, which may be unintuitive and not useful for individuals with higher level cervical injuries. Brain machine interfaces (BMI) offer a promising approach for controlling such systems; however, they currently still require transcutaneous leads connecting indwelling electrodes to external recording devices. While several wireless BMI systems have been designed, high signal bandwidth requirements limit clinical translation. Case Western Reserve University has developed an implantable, modular FES system, the Networked Neuroprosthesis (NNP), to perform combinations of myoelectric recording and neural stimulation for controlling motor functions. However, currently the existing module capabilities are not sufficient for intracortical recordings. METHODS: Here we designed and tested a 1 × 4 cm, 96-channel neural recording module prototype to fit within the specifications to mate with the NNP. The neural recording module extracts power between 0.3-1 kHz, instead of transmitting the raw, high bandwidth neural data to decrease power requirements. RESULTS: The module consumed 33.6 mW while sampling 96 channels at approximately 2 kSps. We also investigated the relationship between average spiking band power and neural spike rate, which produced a maximum correlation of R = 0.8656 (Monkey N) and R = 0.8023 (Monkey W). CONCLUSION: Our experimental results show that we can record and transmit 96 channels at 2ksps within the power restrictions of the NNP system and successfully communicate over the NNP network. We believe this device can be used as an extension to the NNP to produce a clinically viable, fully implantable, intracortically-controlled FES system and advance the field of bioelectronic medicine.

11.
Front Neurosci ; 12: 751, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30455621

RESUMO

Objective: To date, many brain-machine interface (BMI) studies have developed decoding algorithms for neuroprostheses that provide users with precise control of upper arm reaches with some limited grasping capabilities. However, comparatively few have focused on quantifying the performance of precise finger control. Here we expand upon this work by investigating online control of individual finger groups. Approach: We have developed a novel training manipulandum for non-human primate (NHP) studies to isolate the movements of two specific finger groups: index and middle-ring-pinkie (MRP) fingers. We use this device in combination with the ReFIT (Recalibrated Feedback Intention-Trained) Kalman filter to decode the position of each finger group during a single degree of freedom task in two rhesus macaques with Utah arrays in motor cortex. The ReFIT Kalman filter uses a two-stage training approach that improves online control of upper arm tasks with substantial reductions in orbiting time, thus making it a logical first choice for precise finger control. Results: Both animals were able to reliably acquire fingertip targets with both index and MRP fingers, which they did in blocks of finger group specific trials. Decoding from motor signals online, the ReFIT Kalman filter reliably outperformed the standard Kalman filter, measured by bit rate, across all tested finger groups and movements by 31.0 and 35.2%. These decoders were robust when the manipulandum was removed during online control. While index finger movements and middle-ring-pinkie finger movements could be differentiated from each other with 81.7% accuracy across both subjects, the linear Kalman filter was not sufficient for decoding both finger groups together due to significant unwanted movement in the stationary finger, potentially due to co-contraction. Significance: To our knowledge, this is the first systematic and biomimetic separation of digits for continuous online decoding in a NHP as well as the first demonstration of the ReFIT Kalman filter improving the performance of precise finger decoding. These results suggest that novel nonlinear approaches, apparently not necessary for center out reaches or gross hand motions, may be necessary to achieve independent and precise control of individual fingers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...