Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Contam Hydrol ; 264: 104364, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38749070

RESUMO

The increase in antibiotic residues poses a serious threat to ecological and aquatic environments, necessitating the development of cost-effective, convenient, and recyclable adsorbents. In our study, we used cellulose-based layered double hydroxide (LDH) as an efficient adsorbent and nanocarrier for both sulfamethoxazole (SMX) and cefixime (CFX) residues due to their biodegradability and biocompatibility. Chemical processes are measured according to green chemistry metrics to identify which features adhere to the principles. A GREEnness Assessment (ESA), Analytical GREEnness Preparation (AGREEprep), and Analytical Eco-Scale Assessments (ESA) were used to assess the suitability of the proposed analytical method. We extensively analyzed the synthesized CoFe LDH/cellulose before and after the adsorption processes using XRD, FTIR, and SEM. We investigated the factors affecting the adsorption process, such as pH, adsorbent dose, concentrations of SMX and CFX and time. We studied six nonlinear adsorption isotherm models at pH 5 using CoFe LDH, which showed maximum adsorption capacities (qmax) of 272.13 mg/g for SMX and 208.00 mg/g for CFX. Kinetic studies were also conducted. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was performed on Vero cells in direct contact with LDH nanocomposites to evaluate the cytotoxicity and side effects of cellulose-based CoFe LDH. The cellulose-based CoFe LDH nanocomposite demonstrated excellent cytocompatibility and less cytotoxic effects on the tested cell line. These results validate the potential use of these unique LDH-based cellulose cytocompatible biomaterials for water treatment applications. The cost of the prepared adsorbents was investigated.

2.
Environ Res ; 252(Pt 1): 118799, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38552831

RESUMO

Epigenetics plays a vital role in the interaction between living organisms and their environment by regulating biological functions and phenotypic plasticity. Considering that most aquaculture activities take place in open or natural habitats that are vulnerable to environmental changes. Promising findings from recent research conducted on various aquaculture species have provided preliminary evidence suggesting a link between epigenetic mechanisms and economically valuable characteristics. Environmental stressors, including climate changes (thermal stress, hypoxia, and water salinity), anthropogenic impacts such as (pesticides, crude oil pollution, nutritional impacts, and heavy metal) and abiotic factors (infectious diseases), can directly trigger epigenetic modifications in fish. While experiments have confirmed that many epigenetic alterations caused by environmental factors have plastic responses, some can be permanently integrated into the genome through genetic integration and promoting rapid transgenerational adaptation in fish. These environmental factors might cause irregular DNA methylation patterns in genes related to many biological events leading to organs dysfunction by inducing alterations in genes related to oxidative stress or apoptosis. Moreover, these environmental issues alter DNA/histone methylation leading to decreased reproductive competence. This review emphasizes the importance of understanding the effects of environmentally relevant issues on the epigenetic regulation of phenotypic variations in fish. The goal is to expand our knowledge of how epigenetics can either facilitate or hinder species' adaptation to these adverse conditions. Furthermore, this review outlines the areas that warrant further investigation in understanding epigenetic reactions to various environmental issues.

3.
Heliyon ; 9(12): e22691, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38125510

RESUMO

Aloe perryi (AP) has gained considerable interest as a medicinal herb in various biological applications due to its rich phytochemical composition. However, the therapeutic benefits of AP could be potentiated by utilizing nanotechnology. Moreover, cationic solid lipid nanoparticles (CSLNs) possess remarkable characteristics that can greatly enrich a variety of biological uses. An optimization approach was used to achieve high-quality CSLNs to maximize the therapeutic efficacy of AP. Therefore, a factorial design was used to investigate the influence of various variables on the attributes of CSLNs quality. In this study, the factors under investigation were compritol 888 ATO (C-888, X1), poloxamer 188 (PL188, X2), and chitosan (CS, X3), which served as independent variables. The parameters measured as dependent variables included particle size (Y1), zeta potential (Y2), and encapsulation efficiency EE (Y3). The relationship among these variables was determined by Analysis of Variance (ANOVA) and response surface plots. The results revealed that PL188 played a significant role in reducing the particle size of CSLNS (ranging from 207 to 261 nm with 1 % PL188 to 167-229 nm with 3 % PL188). Conversely, an increase in the concentration of CS led to a rise in the particle size. The magnitude of positive zeta potential values was dependent on the increased concentration of CS. Moreover, the higher amounts of C-888 and PL188 improved the EE% of the CSLNs from 42 % to 86 %. Furthermore, a concentration-dependent antioxidant effect of the optimized AP-CSLNs was observed. The antioxidant activity of the optimized AP-CSLNs at 100 µg/mL was 75 % compared to 62 % and 60 % for AP-SLNs and AP solution, respectively. A similar pattern of improvement was also observed with antimicrobial, and anticancer activities of the optimized AP-CSLNs. These findings demonstrated the potential of AP-CSLNs as a carrier system, enhancing the biological activities of AP, opening new possibilities in herbal medicines.

4.
Pharmaceuticals (Basel) ; 16(11)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38004451

RESUMO

BACKGROUND: Diabetic neuropathy is a debilitating manifestation of long-term diabetes mellitus. The present study explored the effects of the roots of Rubia cordifolia L. (R. cordifolia L.) in the Wistar rat model for diabetic neuropathy and possible neuroprotective, antidiabetic, and analgesic mechanisms underlying this effect. MATERIALS AND METHODS: Rats were divided into five experimental groups. An amount of 0.25% carboxy methyl cellulose (CMC) in saline and streptozotocin (STZ) (60 mg/kg) was given to group 1 and group 2, respectively. Group 3 was treated with STZ and glibenclamide simultaneously while groups 4 and 5 were simultaneously treated with STZ and hydroalcoholic extract of the root of R. cordifolia, respectively. Hot plate and cold allodynias were used to evaluate the pain threshold. The antioxidant effects of R. cordifolia were assessed by measuring Thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD). At the end of the study, sciatic nerve and brain tissues were collected for histopathological study. Bcl-2 proteins, cleaved caspase-3, and Bax were assessed through the Western blot method. RESULTS: R. cordifolia significantly attenuated paw withdrawal and tail flick latency in diabetic neuropathic rats. R. cordifolia significantly (p < 0.01) improved the levels of oxidative stress. It was found to decrease blood glucose levels and to increase animal weight in R. cordifolia-treated groups. Treatment with R. cordifolia suppressed the cleaved caspase-3 and reduced the Bax:Bcl2 ratio in sciatic nerve and brain tissue compared to the diabetic group. Histopathological analysis also revealed a marked improvement in architecture and loss of axons in brain and sciatic nerve tissues at a higher dose of R. cordifolia (400 mg/kg). CONCLUSION: R. cordifolia attenuated diabetic neuropathy through its antidiabetic and analgesic properties by ameliorating apoptosis and oxidative stress.

5.
Medicina (Kaunas) ; 59(10)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37893530

RESUMO

Background and Objectives: Alzheimer's disease (AD) stands as a pervasive neurodegenerative ailment of global concern, necessitating a relentless pursuit of remedies. This study aims to furnish a comprehensive exposition, delving into the intricate mechanistic actions of medicinal herbs and phytochemicals. Furthermore, we assess the potential of these compounds in inhibiting human acetylcholinesterase through molecular docking, presenting encouraging avenues for AD therapeutics. Materials and Methods: Our approach entailed a systematic exploration of phytochemicals like curcumin, gedunin, quercetin, resveratrol, nobiletin, fisetin, and berberine, targeting their capability as human acetylcholinesterase (AChE) inhibitors, leveraging the PubChem database. Diverse bioinformatics techniques were harnessed to scrutinize molecular docking, ADMET (absorption, distribution, metabolism, excretion, and toxicity), and adherence to Lipinski's rule of five. Results: Results notably underscored the substantial binding affinities of all ligands with specific amino acid residues within AChE. Remarkably, gedunin exhibited a superior binding affinity (-8.7 kcal/mol) compared to the reference standard. Conclusions: These outcomes accentuate the potential of these seven compounds as viable candidates for oral medication in AD treatment. Notably, both resveratrol and berberine demonstrated the capacity to traverse the blood-brain barrier (BBB), signaling their aptitude for central nervous system targeting. Consequently, these seven molecules are considered orally druggable, potentially surpassing the efficacy of the conventional drug, donepezil, in managing neurodegenerative disorders.


Assuntos
Doença de Alzheimer , Berberina , Plantas Medicinais , Humanos , Doença de Alzheimer/tratamento farmacológico , Simulação de Acoplamento Molecular , Acetilcolinesterase , Berberina/uso terapêutico , Plantas Medicinais/metabolismo , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Inibidores da Colinesterase/química , Compostos Fitoquímicos/uso terapêutico
6.
Saudi J Biol Sci ; 30(9): 103778, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37663396

RESUMO

Pioglitazone (PGL) is an effective insulin sensitizer, however, side effects such as accumulation of subcutaneous fat, edema, and weight gain as well as poor oral bioavailability limit its therapeutic potential for oral delivery. Recent studies have shown that combination of both, PGL and fish oil significantly reduce fasting plasma glucose, improve insulin resistance, and mitigate pioglitazone-induced subcutaneous fat accumulation and weight gain. Nevertheless, developing an effective oral drug delivery system for administration of both medications have not been explored yet. Thus, this study aimed to develop a self-micro emulsifying drug delivery system (SMEDDS) for the simultaneous oral administration of PGL and fish oil. SMEDDS was developed using concentrated fish oil,Tween® 80, and Transcutol HP and optimized by central composite design (CCD). The reconstituted, optimized PGL-SMEDDS exhibited a globule size of 142 nm, a PDI of 0.232, and a zeta potential of -20.9 mV. The in-vitro drug release study of the PGL-SMEDDS showed a first-order model kinetic release and demonstrated remarkable 15-fold enhancement compared to PGL suspension. Additionally, following oral administration in fasting albino Wistar rats, PGL-SMEDDS exhibited 3.4-fold and 1.4-fold enhancements in the AUC0-24h compared to PGL suspension and PGL marketed product. The accelerated stability testing showed that the optimized SMEDDS formulation was stable over a three-month storage period. Taken together, our findings demonstrate that the developed fish oil-based SMEDDS for PGL could serve as effective nanoplatforms for the oral delivery of PGL, warranting future studies to explore its synergistic therapeutic potential in rats.

7.
Materials (Basel) ; 16(15)2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37570067

RESUMO

Lung cancer is a formidable challenge in clinical practice owing to its metastatic nature and resistance to conventional treatments. The codelivery of anticancer agents offers a potential solution to overcome resistance and minimize systemic toxicity. The encapsulation of these agents within nanostructured lipid carriers (NLCs) provides a promising strategy to enhance lymphatic delivery and reduce the risk of relapse. This study aimed to develop an NLC formulation loaded with Gefitinib and Azacitidine (GEF-AZT-NLC) for the treatment of metastatic-resistant lung cancer. The physicochemical properties of the formulations were characterized, and in vitro drug release was evaluated using the dialysis bag method. The cytotoxic activity of the GEF-AZT-NLC formulations was assessed on a lung cancer cell line, and hemocompatibility was evaluated using suspended red blood cells. The prepared formulations exhibited nanoscale size (235-272 nm) and negative zeta potential values (-15 to -31 mV). In vitro study revealed that the GEF-AZT-NLC formulation retained more than 20% and 60% of GEF and AZT, respectively, at the end of the experiment. Hemocompatibility study demonstrated the safety of the formulation for therapeutic use, while cytotoxicity studies suggested that the encapsulation of both anticancer agents within NLCs could be advantageous in treating resistant cancer cells. In conclusion, the GEF-AZT-NLC formulation developed in this study holds promise as a potential therapeutic tool for treating metastatic-resistant lung cancer.

8.
Drug Dev Res ; 84(7): 1453-1467, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37519092

RESUMO

Breast cancer represents a life-threatening problem globally. The major challenge in the clinical setting is the management of cancer resistance and metastasis. Hybrid therapy can affect several cellular targets involved in carcinogenesis with a lessening of adverse effects. Therefore, the current study aims to assemble, and optimize a hybrid of gefitinib (GFT) and simvastatin (SIM)-loaded nanostructured lipid carrier (GFT/SIM-NLC) to combat metastatic and drug-resistant breast cancer. GFT/SIM-NLC cargos were prepared using design of experiments to investigate the impact of poloxamer-188 and fatty acids concentrations on the physicochemical and pharmaceutical behavior properties of NLC. Additionally, the biosafety of the prepared GFT/SIM-NLC was studied using a fresh blood sample. Afterward, the optimized formulation was subjected to an MTT assay to study the cytotoxic activity of GFT/SIM-NLC compared to free GFT/SIM using an MCF-7 cell line as a surrogate model for breast cancer. The present results revealed that the particle size of the prepared NLC ranged from (209 to 410 nm) with a negative zeta potential value ranging from (-17.2 to -23.9 mV). Moreover, the optimized GFT/SIM-NLC formulation showed favorable physicochemical properties and promising lymphatic delivery cargos. A biosafety study indicates that the prepared NLC has a gentle effect on erythrocyte hemolysis. Cytotoxicity studies revealed that GFT/SIM-NLC enhanced the killing of the MCF-7 cell line compared to free GFT/SIM. This study concluded that the hybrid therapy of GFT/SIM-NLC is a potential approach to combat metastatic and drug-resistant breast cancer.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/metabolismo , Portadores de Fármacos/química , Gefitinibe , Sinvastatina/farmacologia , Sinvastatina/uso terapêutico , Reposicionamento de Medicamentos , Lipídeos , Tamanho da Partícula
9.
Life (Basel) ; 13(6)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37374031

RESUMO

The accumulation of body fat due to an imbalance between calorie intake and energy expenditure is called obesity. Metabolic syndrome increases the risk of heart disease, type 2 diabetes, and stroke. The purpose of this study was to determine the effect of Jatropha tanjorensis (J.T.) and Fraxinus micrantha (F.M.) leaf extracts on high-fat diet-induced obesity in rats. Normal control, high-fat diet (HFD) control, orlistat standard, and test groups were created using male Albino Wistar rats (n = 6 per group) weighing 190 ± 15 g. Except for the control group, all regimens were administered orally and continued for 6 weeks while on HFD. Evaluation criteria included body weight, food intake, blood glucose, lipid profile, oxidative stress, and liver histology. High-Performance Thin Layer Chromatography (HPTLC) analysis was performed using a solvent system (7:3 hexane: ethyl acetate for sitosterol solution and Jatropha tanjorensis extracts and 6:4 hexane: ethyl acetate: 1 drop of acetic acid for esculetin and Fraxinus micrantha extracts). There were no deaths during the 14 days before the acute toxicity test, indicating that aqueous and ethanolic extracts of both J.T. and F.M. did not produce acute toxicity at any dose (5, 50, 300, and 2000 mg/kg). The ethanolic and aqueous extracts of J.T. and F.M. leaves at 200 and 400 mg/kg/orally showed a reduction in weight gain, feed intake, and significant decreases in serum glucose and lipid profile. As compared to inducer HFD animals, co-treatment of aqueous and ethanolic extract of both J.T. and F.M. and orlistat increased the levels of antioxidant enzymes and decreased lipid peroxidation. The liver's histological findings showed that the sample had some degree of protection. These results indicate that ethanolic samples of J.T. have antidiabetic potential in diabetic rats fed an HFD. The strong antioxidant potential and restoration of serum lipid levels may be related to this. Co-treatment of samples JTE, JTAQ, FME, FMAQ and orlistat resulted in an increase in antioxidant enzymes and reduction in lipid peroxidation as compared to inducer HFD animals. We report, for the first time, on using these leaves to combat obesity.

10.
Int J Nanomedicine ; 18: 1793-1808, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37051315

RESUMO

Purpose: Curcumin (CUR) and piperine (PP) are bioactive compounds with prominent pharmacological activities that have been investigated for the treatment of various diseases. The aim of the present study is to develop Bio-SNEDDS for CUR and PP as a combined delivery system for cancer therapy. Methods: CUR and PP loaded Bio-SNEDDSs with varying compositions of bioactive lipid oils, surfactants, and cosolvents were prepared at room temperature. Bio-SNEDDSs were characterized using a Zetasizer Nano particle size analyzer and further examined by transmission electron microscopy (TEM) for morphology. The in vivo toxicity of the preparations of Bio-SNEDDS was investigated in wild-type zebrafish embryos and cytotoxicity in THP-1 (human leukemia monocytic cells), Jurkat (human T lymphocyte cells) and HUVEC (non-cancerous normal) cells. Results: Bio-SNEDDSs were successfully developed with black seed oil, Imwitor 988, Transcutol P and Cremophor RH40 at a ratio of 20/20/10/50 (%w/w). The droplet size, polydispersity index and zeta potential of the optimized Bio-SNEDDS were found to be 42.13 nm, 0.59, and -19.30 mV, respectively. Bio-SNEDDS showed a spherical structure evident by TEM analysis. The results showed that Bio-SNEDDS did not induce toxicity in zebrafish embryos at concentrations between 0.40 and 30.00 µg/mL. In TG (fli1: EGFP) embryos treated with Bio-SNEDDS, there was no change in the blood vessel structure. The O-dianisidine staining of Bio-SNEDDS treated embryos at 48 h post-fertilization also showed a significant reduction in the number of blood cells compared to mock (DMSO 0.1% V/V) treated embryos. Bio-SNEDDS induced significant levels of cytotoxicity in the hematological cell lines THP-1 and Jurkat, while low toxicity in normal HUVEC cell lines was observed with IC50 values of 18.63±0.23 µg/mL, 26.03 ± 1.5 µg/mL and 17.52 ± 0.22 µg/mL, respectively. Conclusion: Bio-SNEDDS exhibited enhanced anticancer activity and could thus be an important new pharmaceutical formulation to treat leukemia.


Assuntos
Curcumina , Neoplasias Hematológicas , Leucemia , Nanopartículas , Animais , Humanos , Preparações Farmacêuticas , Curcumina/farmacologia , Peixe-Zebra , Sistemas de Liberação de Medicamentos/métodos , Solubilidade , Administração Oral , Tensoativos/química , Emulsões/química , Nanopartículas/química , Disponibilidade Biológica
11.
Molecules ; 28(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37049738

RESUMO

The essential oils yield of Cedrus atlantica, Chenopodium ambrosioides and Eucalyptus camaldulensis was different. C. ambrosioides gave a relatively higher yield (2.1 ± 0.1%), while that of C. atlantica was low (1.0 ± 0.1%) and that of E. camaldulensis was lower (0.75 ± 0.1% of dry matter). The active ingredients of the essential oils and some of their biological effects were also determined. The characterization of their chemical compositions showed that the three essences have different chemical profiles: C. atlantica was richer in sesquiterpenes (ß-Himachalene (54.21%) and γ -Himachalene (15.54%)), C. ambrosioides was very rich in monoterpene peroxides and monoterpenes (α-Terpinene (53.4%), ascaridole (17.7%) and ρ-Cymene (12.1%)) and E. camaldulensis was very rich in monoterpene compounds and monoterpenols (p-cymene (35.11%), γ-Eudesmol (11.9%), L-linalool (11.51%) and piperitone (10.28%)). The in vitro measurement of antioxidant activity by the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) reduction assay showed a significant performance of the eucalyptus oil and average performance of the other two (C. atlantica and C. ambrosioides). The in vitro bio-test for their antimicrobial effects showed that the antibacterial activity differed depending on the essential oil and the concentration used, and that their bactericidal efficacy was similar or superior to that of synthetic antibiotics. The toxicity test on rats revealed that the LD50 of the three essential oils was 500 mg/kg body weight, which classifies them as category four cytotoxic natural products at high doses.


Assuntos
Chenopodium ambrosioides , Eucalyptus , Óleos Voláteis , Ratos , Animais , Antioxidantes/farmacologia , Eucalyptus/química , Chenopodium ambrosioides/química , Cedrus , Óleo de Eucalipto , Antibacterianos/farmacologia , Monoterpenos/farmacologia , Monoterpenos/química , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Óleos de Plantas/farmacologia , Óleos de Plantas/química
12.
Molecules ; 28(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37049823

RESUMO

The goal of this study was to assess the anticancer efficacy of chlorojanerin against various cancer cells. The effects of chlorojanerin on cell cytotoxicity, cell cycle arrest, and cell apoptosis were examined using MTT assay, propidium iodide staining, and FITC Annexin V assay. RT-PCR was employed to determine the expression levels of apoptosis-related genes. Furthermore, docking simulations were utilized to further elucidate the binding preferences of chlorojanerin with Bcl-2. According to MTT assay, chlorojanerin inhibited the proliferation of all tested cells in a dose-dependent manner with a promising effect against A549 lung cancer cells with an IC50 of 10 µM. Cell growth inhibition by chlorojanerin was linked with G2/M phase cell cycle arrest in A549 treated cells. Flow cytometry analysis indicated that the proliferation inhibition effect of chlorojanerin was associated with apoptosis induction in A549 cells. Remarkably, chlorojanerin altered the expression of many genes involved in apoptosis initiation. Moreover, we determined that chlorojanerin fit into the active site of Bcl-2 according to the molecular docking study. Collectively, our results demonstrate that chlorojanerin mediated an anticancer effect involving cell cycle arrest and apoptotic cell death and, therefore, could potentially serve as a therapeutic agent in lung cancer treatment.


Assuntos
Neoplasias Pulmonares , Humanos , Células A549 , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Pontos de Checagem do Ciclo Celular , Proliferação de Células , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/genética
13.
Metabolites ; 13(4)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37110214

RESUMO

Euphorbia plants have a significant place in traditional medicine due to their numerous therapeutic properties, including their anti-tumor effects, which have been observed in several species. In the current study, a phytochemical investigation of Euphorbia saudiarabica methanolic extract led to the isolation and characterization of four secondary metabolites from the chloroform (CHCl3) and ethyl acetate (EtOAc) fractions, which are reported for the first time in this species. One of the constituents, saudiarabicain F (2), is a rare C-19 oxidized ingol-type diterpenoid that has not been previously reported. The structures of these compounds were determined by extensive spectroscopic (HR-ESI-MS, 1D and 2D NMR) analyses. The anticancer properties of the E. saudiarabica crude extract, its fractions and its isolated compounds were examined against several cancer cells. The active fractions were evaluated for their effects on cell-cycle progression and apoptosis induction using flow cytometry. Furthermore, RT-PCR was employed to estimate the gene-expression levels of the apoptosis-related genes. It was demonstrated that the E. saudiarabica CHCl3 and EtOAc fractions suppressed the proliferation of the cancer cells. The MCF-7 cells were the most sensitive to both fractions, with IC50 values of 22.6 and 23.2 µg/mL, respectively. Notably, both fractions caused cell-cycle arrest in the G2/M phase of the treated MCF-7 cells. The inhibition of the MCF-7 cells' proliferation was also linked with apoptosis induction by flow-cytometry analysis. Additionally, the activation of apoptosis by both fractions was demonstrated by an increase in the ratio of Bax to Bcl-2, with an increase in the expression of caspase-7. Among the isolated compounds, glutinol (1) showed potent activity against the MCF-7 cell line, with an IC50 value of 9.83 µg/mL. Our findings suggest that E. saudiarabica has apoptosis-inducing effects and shows promise as a potential source of new chemotherapeutic drugs.

14.
Molecules ; 28(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36903587

RESUMO

In the emerging field of nanomedicine, nanoparticles have been widely considered as drug carriers and are now used in various clinically approved products. Therefore, in this study, we synthesized superparamagnetic iron-oxide nanoparticles (SPIONs) via green chemistry, and the SPIONs were further coated with tamoxifen-conjugated bovine serum albumin (BSA-SPIONs-TMX). The BSA-SPIONs-TMX were within the nanometric hydrodynamic size (117 ± 4 nm), with a small poly dispersity index (0.28 ± 0.02) and zeta potential of -30.2 ± 0.09 mV. FTIR, DSC, X-RD, and elemental analysis confirmed that BSA-SPIONs-TMX were successfully prepared. The saturation magnetization (Ms) of BSA-SPIONs-TMX was found to be ~8.31 emu/g, indicating that BSA-SPIONs-TMX possess superparamagnetic properties for theragnostic applications. In addition, BSA-SPIONs-TMX were efficiently internalized into breast cancer cell lines (MCF-7 and T47D) and were effective in reducing cell proliferation of breast cancer cells, with IC50 values of 4.97 ± 0.42 µM and 6.29 ± 0.21 µM in MCF-7 and T47D cells, respectively. Furthermore, an acute toxicity study on rats confirmed that these BSA-SPIONs-TMX are safe for use in drug delivery systems. In conclusion, green synthesized superparamagnetic iron-oxide nanoparticles have the potential to be used as drug delivery carriers and may also have diagnostic applications.


Assuntos
Nanopartículas de Magnetita , Nanopartículas , Neoplasias , Humanos , Ratos , Animais , Nanopartículas de Magnetita/química , Células MCF-7 , Nanopartículas Magnéticas de Óxido de Ferro , Portadores de Fármacos , Nanopartículas/química , Ferro , Óxidos
15.
Int J Biol Macromol ; 233: 123506, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36739054

RESUMO

In this study, in vitro and in vivo methods were used to evaluate the cytotoxicity and genotoxicity properties of silver nanoparticles (Ag-NPs) made from a crude ethanolic extract of Salacia chinensis. The test Ag-NPs had no cytotoxicity on the fibroblast cell line at a concentration of 100 µg/mL, according to the MTT assay results. The Chinese hamster ovary (CHO) cell line treated with varied concentrations of test Ag-NPs, with a maximum concentration of 200 µg/mL, did not exhibit any appreciable genotoxic activity, either by comparing the results with positive controls of genotoxicity caused by Methyl methane sulfonate and Benzo (a) pyrene at the concentration of 20 µg/mL, the lack of genotoxicity was established. An in vivo study in Swiss albino mice using various concentrations (250, 500, and 1000 mg/kg) of test Ag-NPs, which were compared with positive controls, further confirmed this in vitro result pattern. Contrary to the genotoxicity caused by the positive control, mouse bone marrow micronucleus testing findings revealed the absence of genotoxicity. These findings imply that at the measured doses, the Ag-NPs produced from the crude ethanolic extract of Salacia chinensis do not exhibit any cytotoxicity or genotoxicity.


Assuntos
Nanopartículas Metálicas , Salacia , Cricetinae , Animais , Camundongos , Células CHO , Prata , Cricetulus , Dano ao DNA , Etanol
16.
Colloids Surf B Biointerfaces ; 223: 113148, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36706479

RESUMO

Lymphatic drug delivery (LDD) is an attractive option for the prevention and treatment of cancer metastasis. This study aims to develop TPGS decorated nanostructure lipid carrier gefitinib loaded (TPGS-NLC-GEF). Biocompatibility and cytotoxicity were studied using erythrocytes and A549 cell lines. Furthermore, cellular uptake of the prepared TPGS-NLC was studied using 5-carboxyfluorescein (5-CF). Pharmacokinetic, biodistribution, and chylomicron-block flow studies were performed using male Wister Albino rats to investigate the influence of TPGS-NLC on plasma concentration-time profile, organ deposition, and LDD of GEF. The present results indicated that the prepared TPGS-NLC and TPGS-NLC-GEF formulation had a particle size range of 268 and 288 nm with a negative zeta-potential value of - 29.3 and - 26.5 mV, respectively. The in-vitro release showed burst drug release followed by sustained release. In addition, the biosafety in the term of the hemocompatibility study showed that the prepared formulation was safe at the therapeutic level. Additionally, an in-vitro cytotoxicity study showed that the TPGS-NLC was able to enhance the activity of GEF against the A549 cell line. The cellular uptake study showed the ability of TPGS-NLC to enhance 5-CF internalization by 12.6-fold compared to the 5-CF solution. Furthermore, the in-vivo study showed that TPGS-NLC was able to enhance GEF bioavailability (1.5-fold) through lymphatic system which was confirmed via the indirect chylomicron-block flow method. The tissue distribution study showed the ability of lipid nanoparticles to enhance lung drug deposition by 5.8-fold compared to a GEF suspension. This study concluded that GEF-NLC-GEF is an encouraging approach for the treatment of metastatic lung cancer through lymphatic delivery, enhanced bioavailability, and reduced systemic toxicity.


Assuntos
Portadores de Fármacos , Nanopartículas , Masculino , Disponibilidade Biológica , Quilomícrons , Portadores de Fármacos/química , Gefitinibe , Nanopartículas/química , Tamanho da Partícula , Distribuição Tecidual , Ratos , Animais
17.
Saudi Pharm J ; 31(12): 101879, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38192283

RESUMO

Pulicaria arabica has been traditionally utilized in folk medicine for various purposes such as ulcer treatments as well as antidiarrheal agent. Herein, the chemical profiles of Pulicaria arabica essential oils (PAEOs) and the in vitro antiproliferative effect of PAEOs were investigated. Hydrodistillation was employed to prepare PAEOs which were then characterized by GC/MS, while the antiproliferative effects were investigated by MTT assay as well as flow cytometric and RT-PCR analysis. Sixty-four (99.99 %) constituents were recognized from PAEOs. Carvotanacetone (36.97 %), (-)-carvomenthone (27.20 %) and benzene, 2-(1,1-dimethylethyl)-1,4-dimethoxy- (6.92 %) were the main components. PAEOs displayed IC50 values ranging from 30 to 50 µg/mL. DNA content analysis revealed that A549 cells exposed to PAEOs exhibited an increase in G1 cells population. The flow cytometry analysis results also showed that the PAEOs antiproliferative effect was mediated via apoptosis induction. Furthermore, a modulation in the pro-apoptotic markers (caspase-3 and Bax) and anti-apoptotic (Bcl-2) was also observed. In conclusion, PAEOs exhibited a moderate anti-proliferative effect on A549 cells through modulating the cell cycle progression and apoptosis initiation. These findings could offer a potential therapeutic use of PAEOs in lung cancer treatment.

18.
Fitoterapia ; 163: 105330, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36220499

RESUMO

Phytochemical investigation of Penicillium sp. RO-11 strain, collected from the sediments of a hydrothermal spring located in the southwestern area of Saudi Arabia, afforded, along with previously isolated compounds, the undescribed polyketides penicillactonin (1), penipyranicin D (4) and isopyrenulin B (5) and the undescribed meroterpenoid preaustinoid C (7). The structures of these compounds were elucidated based on data from mass spectrometry, 1D and 2D NMR, and comparison between experimental and calculated ECD spectra. Penicillactonin and preaustinoid C bring unprecedented structural features, for which a biosynthetic rationale is proposed, further extending the chemodiversity associated to Penicillium fungi. Preaustinoid C showed significant activity against LPS-induced NO production and selective effect on IL-2 and IFN-γ gene regulation in activated Jurkat cells.


Assuntos
Fontes Termais , Penicillium , Policetídeos , Humanos , Penicillium/química , Lactonas , Estrutura Molecular
19.
Int J Nanomedicine ; 17: 3287-3311, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35924261

RESUMO

Purpose: The present study aimed to develop gefitinib-loaded solid lipid nanoparticles (GEF-SLN), and GEF-loaded PEGylated SLN (GEF-P-SLN) for targeting metastatic lung cancer through the lymphatic system. Methods: The prepared SLNs were characterized in terms of physicochemical properties, entrapment efficiency, and in-vitro release. Furthermore, ex-vivo permeability was investigated using the rabbit intestine. Cytotoxicity and apoptotic effects were studied against A549 cell lines as a model for lung cancer. Results: The present results revealed that the particle size and polydispersity index of the prepared formulations range from 114 to 310 nm and 0.066 to 0.350, respectively, with negative zeta-potential (-14 to -27.6). Additionally, SLN and P-SLN showed remarkable entrapment efficiency above 89% and exhibited sustained-release profiles. The permeability study showed that GEF-SLN and GEF-P-SLN enhanced the permeability of GEF by 1.71 and 2.64-fold, respectively, compared with GEF suspension. Cytotoxicity showed that IC50 of pure GEF was 3.5 µg/mL, which decreased to 1.95 and 1.8 µg/mL for GEF-SLN and GEF-P-SLN, respectively. Finally, the apoptotic study revealed that GEF-P-SLN decreased the number of living cells from 49.47 to 3.43 when compared with pure GEF. Conclusion: These results concluded that GEF-P-SLN is a promising approach to improving the therapeutic outcomes of GEF in the treatment of metastatic lung cancer.


Assuntos
Neoplasias Pulmonares , Nanopartículas , Animais , Portadores de Fármacos/química , Gefitinibe/uso terapêutico , Lipídeos/química , Lipossomos , Neoplasias Pulmonares/tratamento farmacológico , Sistema Linfático , Nanopartículas/química , Tamanho da Partícula , Polietilenoglicóis/uso terapêutico , Coelhos
20.
AAPS PharmSciTech ; 23(6): 183, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35773422

RESUMO

The present study aimed to engineer a nanoscale lipid-based lymphatic drug delivery system with D-α-Tocopherol polyethylene glycol 1000 succinate to combat the lymphatic metastasis of lung cancer. The nanoscale lipid-based systems including GEF-SLN, GEF-NLC, and GEF-LE were prepared and pharmaceutically characterized. In addition, the most stable formulation (GEF-NLC) was subjected to an in vitro release study. Afterward, the optimized GEF-NLC was engineered with TPGS (GEF-TPGS-NLC) and subjected to in vitro cytotoxicity, and apoptotic studies using the A549 cells line as a surrogate model for lung cancer. The present results revealed that particle size and polydispersity index of freshly prepared formulations were ranging from 198 to 280 nm and 0.106 to 0.240, respectively, with negative zeta potential ranging from - 14 to - 27.6.mV. An in vitro release study showed that sustained drug release was attained from GEF-NLC containing a high concentration of lipid. In addition, GEF-NLC and GEF-TPGS-NLC showed remarkable entrapment efficiency above 89% and exhibited sustained release profiles. Cytotoxicity showed that IC50 of pure GEF was 11.15 µg/ml which decreased to 7.05 µg/ml for GEF-TPGS-NLC. The apoptotic study revealed that GEF-TPGS-NLC significantly decreased the number of living cells from 67 to 58% when compared with pure GEF. The present results revealed that the nanoscale and lipid composition of the fabricated SLN, NLC, and LE could mediate the lymphatic uptake of GEF to combat the lymphatic tumor metastasis. Particularly, GEF-TPGS-NLC is a promising LDDS to increase the therapeutic outcomes of GEF during the treatment of metastatic lung cancer.


Assuntos
Neoplasias Pulmonares , Nanopartículas , Células A549 , Linhagem Celular Tumoral , Portadores de Fármacos , Sistemas de Liberação de Medicamentos/métodos , Gefitinibe , Humanos , Lipídeos , Neoplasias Pulmonares/tratamento farmacológico , Tamanho da Partícula , Vitamina E
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...