Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37111995

RESUMO

Polylactic acid (PLA) is one of the most important biopolymers employed on the market due to its good mechanical strength and barrier properties. On the other hand, this material presents a rather low flexibility, limiting its employment. The valorization of bio-based agro-food waste for the modification of bioplastics is a highly appealing approach for the replacement of petrol-based materials. The aim of this work is to employ cutin fatty acids derived from a biopolymer (i.e., cutin), present in waste tomato peels and its bio-based derivatives as new plasticizers to enhance PLA flexibility. In particular, pure 10,16-dihydroxy hexadecanoic acid was extracted and isolated from tomato peels and then functionalized to give the desired compounds. All the molecules developed in this study were characterized by NMR and ESI-MS. Blends at different concentrations (10, 20, 30, and 40% w/w) the flexibility (Tg measurements with differential scanning calorimetry-DSC) of the final material. Furthermore, the physical behavior of two blends obtained by mechanical mixing of PLA and 16-methoxy,16-oxohexadecane-1,7-diyl diacetate was investigated through thermal and tensile tests. The data collected by DSC show a lowering in the Tg of all the blends of PLA with functionalized fatty acids, in comparison with pure PLA. Lastly, the tensile tests highlighted how PLA blended with 16-methoxy,16-oxohexadecane-1,7-diyl diacetate (20% w/w) can efficiently enhance its flexibility.

2.
Chem Sci ; 13(36): 10686-10698, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36320685

RESUMO

In the present manuscript, we describe how we successfully used ligand-based virtual screening (LBVS) to identify two small-molecule, drug-like hit classes with excellent ADMET profiles against the difficult to address microbial enzyme 1-deoxy-d-xylulose-5-phosphate synthase (DXPS). In the fight against antimicrobial resistance (AMR), it has become increasingly important to address novel targets such as DXPS, the first enzyme of the 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway, which affords the universal isoprenoid precursors. This pathway is absent in humans but essential for pathogens such as Mycobacterium tuberculosis, making it a rich source of drug targets for the development of novel anti-infectives. Standard computer-aided drug-design tools, frequently applied in other areas of drug development, often fail for targets with large, hydrophilic binding sites such as DXPS. Therefore, we introduce the concept of pseudo-inhibitors, combining the benefits of pseudo-ligands (defining a pharmacophore) and pseudo-receptors (defining anchor points in the binding site), for providing the basis to perform a LBVS against M. tuberculosis DXPS. Starting from a diverse set of reference ligands showing weak inhibition of the orthologue from Deinococcus radiodurans DXPS, we identified three structurally unrelated classes with promising in vitro (against M. tuberculosis DXPS) and whole-cell activity including extensively drug-resistant strains of M. tuberculosis. The hits were validated to be specific inhibitors of DXPS and to have a unique mechanism of inhibition. Furthermore, two of the hits have a balanced profile in terms of metabolic and plasma stability and display a low frequency of resistance development, making them ideal starting points for hit-to-lead optimization of antibiotics with an unprecedented mode of action.

3.
Sci Total Environ ; 844: 157025, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-35777565

RESUMO

Cocaine (COC) and its main metabolite, the benzoylecgonine (BE), are the main illicit drugs measured in aquatic system worldwide, with concentrations up to hundreds of ng/L. Although their current environmental concentrations are low these molecules can induce adverse effects at sub-individual level in non-target organisms. In contrast, the information at individual and behavioral level are still scant. The present study aimed at investigating biochemical and behavioral effects induced by 14-days exposure to environmentally relevant concentrations (50 ng/L and 500 ng/L) of COC and BE towards Procambarus clarkii. At sub-individual level, the activity of antioxidant and detoxifying (superoxide dismutase - SOD, catalase - CAT, glutathione peroxidase - GPx and glutathione S-transferases - GST) enzymes, as well as the levels of lipid peroxidation (LPO), were measured as oxidative stress-related endpoints. We also measured the acetylcholinesterase (AChE) activity to check for neurotoxic effect of COC and BE. At individual level, the modulation of some behavioral tasks (i.e., response to external stimuli, changes in feeding activity and exploration of a new environment) were assessed. Although both COC and BE exposure did not induce an oxidative stress situation, a significant inhibition of AChE activity was noted, resulting in behavioral changes in crayfish exposed to COC only. Crayfish exposed to the higher COC concentration showed an increase in the boldness and a decrease in the feeding activity, suggesting that COC may act according to its psychotropic mode of action.


Assuntos
Cocaína , Poluentes Químicos da Água , Acetilcolinesterase/metabolismo , Animais , Astacoidea/metabolismo , Cocaína/análogos & derivados , Cocaína/toxicidade , Estresse Oxidativo , Poluentes Químicos da Água/metabolismo
4.
Chembiochem ; 23(8): e202200105, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35188325

RESUMO

Ginger is among the most widespread and widely consumed traditional medicinal plants around the world. Its beneficial effects, which comprise e. g. anticancer and anti-inflammatory activities as well as gastrointestinal regulatory effects, are generally attributed to a family of non-volatile compounds characterized by an arylalkyl long-chained alcohol, diol, or ketone moiety. In this work, ginger active components have been successfully recovered from industrial waste biomass of fermented ginger. Moreover, their recovery has been combined with the first systematic study of the stereoselective reduction of gingerol-like compounds by isolated alcohol dehydrogenases (ADHs), obtaining the enantioenriched sec-alcohol derivatives via a sustainable biocatalytic path in up to >99 % conversions and >99 % enantiomeric/diastereomeric excesses.


Assuntos
Zingiber officinale , Álcool Desidrogenase , Álcoois , Catecóis , Álcoois Graxos , Resíduos Industriais , Cetonas
5.
Chirality ; 34(3): 498-513, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34962318

RESUMO

Protein kinase C (PKC) isoforms play a pivotal role in the regulation of numerous cellular functions, making them extensively studied and highly attractive drug targets. In our previous work, we identified in racemate 1-2, based on the 2-benzyl-3-hydroxypropyl ester scaffold, two new potent and promising PKCα and PKCδ ligands, targeting the C1 domain of these two kinases. Herein, we report the resolution of the racemates by enantioselective semi-preparative HPLC. The attribution of the absolute configuration (AC) of homochirals 1 was performed by NMR, via methoxy-α-trifluoromethyl-α-phenylacetic acid derivatization (MTPA or Mosher's acid). Moreover, the match between the experimental and predicted electronic circular dichroism (ECD) spectra confirmed the assigned AC. These results proved that Mosher's esters can be properly exploited for the determination of the AC also for chiral primary alcohols. Lastly, homochiral 1 and 2 were assessed for binding affinity and functional activity against PKCα. No significative differences in the Ki of the enantiopure compounds was observed, thus suggesting that chirality does not seem to play a significant role in targeting PKC C1 domain. These results are in accordance with the molecular docking studies performed using a new homology model for the human PKCαC1B domain.


Assuntos
Ésteres , Proteína Quinase C-alfa , Cromatografia Líquida de Alta Pressão/métodos , Humanos , Simulação de Acoplamento Molecular , Estereoisomerismo
6.
Amino Acids ; 53(6): 869-880, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33945018

RESUMO

Prostate cancer (PCa) is the most common malignancy in men and represents the second leading cause of cancer deaths in Western countries. PCa is initially androgen-dependent, however, this tumor inevitably progresses as castration-resistant prostate cancer (CRPC), which represents the most aggressive phase of the pathology. In this work, in two CRPC cell lines (DU145 and PC3), we studied the in vitro inhibitory properties of the tryptophan-derived endogenous metabolite kynurenic acid (KYNA) and of the lactam form of 3-2'-pyrrilonidinyl-kynurenic acid (3-PKA-L), alkaloids usually present in combination in chestnut honey. Cytotoxicity was evaluated by 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, cell colony formation assay, and Western blot analysis of the major mediator proteins involved in apoptotic processes. In all experiments, KYNA was scarcely or not active while 3-PKA-L showed anticancer activity in the high concentration range (0.01 mM - 1 mM) from 24 to 72 h. The results obtained showed that cell death was induced by extrinsic apoptotic pathway, by cell morphological changes and reduction of cell colonies number. These novel results represent the first promising step to the accurate description of 3-PKA-L cytotoxic effect, not observed with KYNA, paving the way to the search of new anticancer agents, as well as to the better understanding of the physiopathological role of this interesting natural product.


Assuntos
Alcaloides , Antineoplásicos Fitogênicos , Apoptose/efeitos dos fármacos , Hippocastanaceae/química , Neoplasias da Próstata , Alcaloides/química , Alcaloides/isolamento & purificação , Alcaloides/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Masculino , Células PC-3 , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia
7.
Front Nutr ; 7: 60, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32457916

RESUMO

Phenolic compounds are broadly represented in plant kingdom, and their occurrence in easily accessible low-cost sources like wastes from agri-food processing have led in the last decade to an increase of interest in their recovery and further exploitation. Indeed, most of these compounds are endowed with beneficial properties to human health (e.g., in the prevention of cancer and cardiovascular diseases), that may be largely ascribed to their potent antioxidant and scavenging activity against reactive oxygen species generated in settings of oxidative stress and responsible for the onset of several inflammatory and degenerative diseases. Apart from their use as food supplements or as additives in functional foods, natural phenolic compounds have become increasingly attractive also from a technological point of view, due to their possible exploitation in materials science. Several extraction methodologies have been reported for the recovery of phenolic compounds from agri-food wastes mostly based on the use of organic solvents such as methanol, ethanol, or acetone. However, there is an increasing need for green and sustainable approaches leading to phenolic-rich extracts with low environmental impact. This review addresses the most promising and innovative methodologies for the recovery of functional phenolic compounds from waste materials that have appeared in the recent literature. In particular, extraction procedures based on the use of green technologies (supercritical fluid, microwaves, ultrasounds) as well as of green solvents such as deep eutectic solvents (DES) are surveyed.

8.
ACS Med Chem Lett ; 10(4): 615-620, 2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30996806

RESUMO

The key role of RNA-binding proteins (RBPs) in regulating post-transcriptional processes and their involvement in several pathologies (i.e., cancer and neurodegeneration) have highlighted their potential as therapeutic targets. In this scenario, Embryonic Lethal Abnormal Vision (ELAV) or Hu proteins and their complexes with target mRNAs have been gaining growing attention. Compounds able to modulate the complex stability could constitute an innovative pharmacological strategy for the treatment of numerous diseases. Nevertheless, medicinal-chemistry efforts aimed at developing such compounds are still at an early stage. As part of our ongoing research in this field, we hereby present the rational design and synthesis of structurally novel HuR ligands, potentially acting as HuR-RNA interferers. The following assessment of the structural features of their interaction with HuR, combining saturation-transfer difference NMR and in silico studies, provides a guide for further research on the development of new effective interfering compounds of the HuR-RNA complex.

9.
J Med Chem ; 60(20): 8257-8267, 2017 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-28587461

RESUMO

RNA-binding proteins play a key role in post-transcriptional processes. Among these proteins, embryonic lethal abnormal vision (ELAV) proteins are among the best described. ELAV proteins predominantly act as positive regulators of gene expression, and their dysregulation is involved in several pathologies, such as cancer, inflammation, and neurodegenerative diseases. Only a few structurally unrelated compounds interfering with ELAV protein-mRNA complexes have been identified by applying high-throughput screening approaches. Considering the structural diversity of the compounds discovered so far and the different techniques employed for screening their ability to interfere with ELAV protein-mRNA complexes, drawing conclusions from structure-activity relationships remains a challenge. We performed docking studies to understand the interactions of compounds reported over the past decade to be inhibitors of ELAV proteins and to evaluate the potential of computer-aided drug design to target this family of proteins for further drug discovery.


Assuntos
Descoberta de Drogas , Proteína Semelhante a ELAV 1/metabolismo , RNA/metabolismo , Desenho de Fármacos , Ensaios de Triagem em Larga Escala , Humanos , Ligação Proteica , Relação Estrutura-Atividade
10.
Pharmaceuticals (Basel) ; 10(2)2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28524095

RESUMO

Effective therapies for chronic or non-healing wounds are still lacking. These tissue insults often result in severe clinical complications (i.e., infections and/or amputation) and sometimes lead to patient death. Accordingly, several research groups have focused their efforts in finding innovative and powerful therapeutic strategies to overcome these issues. On the basis of these considerations, the comprehension of the molecular cascades behind these pathological conditions could allow the identification of molecules against chronic wounds. In this context, the regulation of the Protein Kinase C (PKC) cascade has gained relevance in the prevention and/or reparation of tissue damages. This class of phosphorylating enzymes has already been considered for different physiological and pathological pathways and modulation of such enzymes may be useful in reparative processes. Herein, the recent developments in this field will be disclosed, highlighting the pivotal role of PKC α and δ in regenerative medicine. Moreover, an overview of well-established PKC ligands, acting via the modulation of these isoenzymes, will be deeply investigated. This study is aimed at re-evaluating widely known PKC modulators, currently utilized for treating other diseases, as fruitful molecules in wound-healing.

11.
J Pharm Biomed Anal ; 144: 41-51, 2017 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-28118957

RESUMO

The enantiomers of four chiral 3-aryl-substituted-γ-butyrolactones, key intermediates for the preparation of compounds of pharmaceutical interest, were successfully isolated by enantioselective chromatography, employing the Chiralpak AD-H chiral stationary phase. For all compounds the same elution order was observed, as monitored by a full set of chiroptical methods that we employed, namely ORD (optical rotatory dispersion), ECD (electronic circular dichroism, or CD in the UV range), and VCD (vibrational circular dichroism, or CD in the IR range). By density functional theory (DFT) calculations we were able to determine that the first eluted enantiomer has (S) absolute configuration in all four cases. We were able to justify the elution order by molecular docking calculations for all four enantiomeric pairs and suitable modeling of the stationary and mobile phases of the employed columns. The optimal performance of the chiroptical spectroscopies and of the DFT calculations allows us to formulate a lactone chirality rule out of the CO stretching region of the VCD spectra.


Assuntos
Cromatografia Líquida de Alta Pressão , 4-Butirolactona , Dicroísmo Circular , Simulação de Acoplamento Molecular , Dispersão Óptica Rotatória , Preparações Farmacêuticas , Estereoisomerismo
12.
Chirality ; 28(5): 434-40, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27095007

RESUMO

The chiral separation of enantiomeric couples of three potential A3 adenosine receptor antagonists: (R/S)-N-(6-(1-phenylethoxy)-2-(propylthio)pyrimidin-4-yl)acetamide (), (R/S)-N-(2-(1-phenylethylthio)-6-propoxypyrimidin-4-yl)acetamide (), and (R/S)-N-(2-(benzylthio)-6-sec-butoxypyrimidin-4-yl)acetamide () was achieved by high-performance liquid chromatography (HPLC). Three types of chiroptical spectroscopies, namely, optical rotatory dispersion (ORD), electronic circular dichroism (ECD), and vibrational circular dichroism (VCD), were applied to enantiomeric compounds. Through comparison with Density Functional Theory (DFT) calculations, encompassing extensive conformational analysis, full assignment of the absolute configuration (AC) for the three sets of compounds was obtained. Chirality 28:434-440, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Antagonistas do Receptor A3 de Adenosina/química , Cromatografia Líquida de Alta Pressão/métodos , Dicroísmo Circular , Modelos Moleculares , Estrutura Molecular , Dispersão Óptica Rotatória , Pirimidinas/química , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...