Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci ; 269: 119043, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33453240

RESUMO

AIMS: Azelnidipine, a third-generation dihydropyridine calcium channel blocker (DHP CCB), has a characteristic hypotensive effect that persists even after it has disappeared from the plasma, which is thought to be due to its high hydrophobicity. However, because azelnidipine is unique, it might have other unknown effects on L-type Cav1.2 channels that result in the long-lasting decrease of blood pressure. The aim of this study was to investigate the potential quantitative modification of Cav1.2 by azelnidipine. MAIN METHODS: HEK293 cells were used to express Cav1.2 channels. Immunocytochemical analysis was performed to detect changes in the surface expression of the pore-forming subunit of the Cav1.2 channel, Cav1.2α1c. Western blotting analysis was performed to evaluate changes in expression levels of total Cav1.2α1c and Cavß2c. KEY FINDINGS: The surface expression of Cav1.2α1c was markedly reduced by treatment with azelnidipine, but not with other DHP CCBs (amlodipine and nicardipine). Results obtained with a dynamin inhibitor and an early endosome marker suggested that the reduction of surface Cav1.2α1c was not likely caused by internalization. Azelnidipine reduced the total amount of Cav1.2α1c protein in HEK293 cells and rat pulmonary artery smooth muscle cells. The reduction of Cav1.2α1c was rescued by inhibiting proteasome activity. In contrast, azelnidipine did not affect the amount of auxiliary Cavß2c subunits that function as a chaperone of Cav1.2. SIGNIFICANCE: This study is the first to demonstrate that azelnidipine reduces the expression of Cav1.2α1c, which might partly explain its long-lasting hypotensive effect.


Assuntos
Ácido Azetidinocarboxílico/análogos & derivados , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/metabolismo , Di-Hidropiridinas/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Artéria Pulmonar/metabolismo , Animais , Ácido Azetidinocarboxílico/farmacologia , Canais de Cálcio Tipo L/química , Células Cultivadas , Células HEK293 , Humanos , Músculo Liso Vascular/efeitos dos fármacos , Artéria Pulmonar/efeitos dos fármacos , Ratos
2.
Biochem Pharmacol ; 169: 113628, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31491415

RESUMO

KCNQ1 (Kv7.1 or KvLQT1) plays important physiological roles in various tissues forming potassium channels with KCNE subunits. Among the channels formed by KCNQ1 and KCNE subunits, the best studied is the slow delayed rectifier potassium channel in the heart, the IKs (KCNQ1/KCNE1) channel, which is critical for repolarization of cardiac action potential. The KCNQ1 channel is internalized by Nedd4/Nedd4-like ligase-dependent ubiquitination. It is also reported that phosphorylation of KCNE1 by PKC results in internalization of the KCNQ1/KCNE1 channel. Because we have observed down-regulation of KCNQ1/KCNE1 currents by activation of the α1-adrenergic receptor (α1AR) that activates PKC, this study investigated whether α1AR causes internalization of the KCNQ1 protein. We fused HaloTag to the extracellular region of KCNQ1 (Halo-KCNQ1) and co-expressed it with α1ARs in HEK293 cells. The KCNQ1 protein on the cell surface was selectively labeled with membrane-impermeable HaloTag ligands, and changes in its localization were monitored by confocal fluorescence microscopy. Activation of α1AAR and α1BAR caused marked internalization of KCNQ1, which was not KCNE1-dependent. Internalization of KCNQ1 by α1AR activation was inhibited by disruption of the PY motif or the YXXΦ motif in the C-terminus. Double staining for the receptor and the channel revealed that KCNQ1 internalization was independent of α1AR internalization. Our results suggest that α1AR-mediated direct internalization of KCNQ1 is AP2/clathrin-dependent and may be triggered by ubiquitination of KCNQ1 via the AMP dependent kinase (AMPK)/Nedd4-2 pathway. When phenylephrine was applied to rat neonatal cardiomyocytes transfected with KCNQ1 and α1AR, the KCNQ1 protein was internalized. The internalization of KCNQ1 by α1AR would affect pathophysiology in a variety of tissues expressing KCNQ1, which merits further in vivo study.


Assuntos
Canal de Potássio KCNQ1/metabolismo , Receptores Adrenérgicos alfa 1/fisiologia , Proteínas Quinases Ativadas por AMP/fisiologia , Animais , Células HEK293 , Humanos , Miócitos Cardíacos/metabolismo , Proteína Quinase C/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores da Transferrina/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...