Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 9846, 2024 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684715

RESUMO

Astrocytes are glycolytically active cells in the central nervous system playing a crucial role in various brain processes from homeostasis to neurotransmission. Astrocytes possess a complex branched morphology, frequently examined by fluorescent microscopy. However, staining and fixation may impact the properties of astrocytes, thereby affecting the accuracy of the experimental data of astrocytes dynamics and morphology. On the other hand, phase contrast microscopy can be used to study astrocytes morphology without affecting them, but the post-processing of the resulting low-contrast images is challenging. The main result of this work is a novel approach for recognition and morphological analysis of unstained astrocytes based on machine-learning recognition of microscopic images. We conducted a series of experiments involving the cultivation of isolated astrocytes from the rat brain cortex followed by microscopy. Using the proposed approach, we tracked the temporal evolution of the average total length of branches, branching, and area per astrocyte in our experiments. We believe that the proposed approach and the obtained experimental data will be of interest and benefit to the scientific communities in cell biology, biophysics, and machine learning.


Assuntos
Astrócitos , Aprendizado de Máquina , Microscopia de Contraste de Fase , Astrócitos/citologia , Animais , Microscopia de Contraste de Fase/métodos , Ratos , Células Cultivadas , Processamento de Imagem Assistida por Computador/métodos , Córtex Cerebral/citologia
2.
Phys Rev E ; 109(3-1): 034601, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38632726

RESUMO

Swarming behavior in systems of self-propelled particles, whether biological or artificial, has received increased attention in recent years. Here, we show that even a small number of particles with anomalous behavior can change dramatically collective dynamics of the swarming system and can impose unusual behavior and transitions between dynamic states. Our results pave the way to practical approaches and concepts of multiagent dynamics in groups of flocking animals: birds, insects, and fish, i.e., active and living soft matter.

3.
Phys Rev E ; 107(4-1): 044601, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37198785

RESUMO

The effects of inertia in active matter and motility-induced phase separation (MIPS) have attracted growing interest but still remain poorly studied. We studied MIPS behavior in the Langevin dynamics across a broad range of particle activity and damping rate values with molecular dynamic simulations. Here we show that the MIPS stability region across particle activity values consists of several domains separated by discontinuous or sharp changes in susceptibility of mean kinetic energy. These domain boundaries have fingerprints in the system's kinetic energy fluctuations and characteristics of gas, liquid, and solid subphases, such as the number of particles, densities, or the power of energy release due to activity. The observed domain cascade is most stable at intermediate damping rates but loses its distinctness in the Brownian limit or vanishes along with phase separation at lower damping values.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...