Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 135(1): 301-8, 2013 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-23214430

RESUMO

Determining the existence of any direct spectral relationship between the far-field scattering properties and the near-field Raman-enhancing properties of surface-enhanced Raman spectroscopy (SERS) substrates has been a challenging task with only a few significant results to date. Here, we prove that hot spot dominated systems show little dependence on the far-field scattering properties because of differences between near- and far-field localized surface plasmon resonance (LSPR) effects as well as excitation of new plasmon modes via a localized emitter. We directly probe the relationship between the near- and far-field light interactions using a correlated LSPR-transmission electron microscopy (TEM) surface-enhanced Raman excitation spectroscopy (SERES) technique. Fourteen individual SERS nanoantennas, Au nanoparticle aggregates ranging from dimers to undecamers, coated in a reporter molecule and encased in a protective silica shell, were excited using eight laser wavelengths. We observed no correlation between the spectral position of the LSPR maxima and the maximum enhancement factor (EF). The single nanoantenna data reveal EFs ranging from (2.5 ± 0.6) × 10(4) to (4.5 ± 0.6) × 10(8) with maximum enhancement for excitation wavelengths of 785 nm and lower energy. The magnitude of maximum EF was not correlated to the number of cores in the nanoantenna or the spectral position of the LSPR, suggesting a separation between near-field SERS enhancement and far-field Rayleigh scattering. Computational electrodynamics confirms the decoupling of maximum SERS enhancement from the peak of the scattering spectrum. It also points to the importance of a localized emitter for radiating Raman photons to the far-field which, in nonsymmetric systems, allows for the excitation of radiative plasmon modes that are difficult to excite with plane waves. Once these effects are considered, we are able to fully explain the hot spot dominated SERS response of the nanoantennas.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Estrutura Molecular , Tamanho da Partícula , Análise Espectral Raman , Propriedades de Superfície
2.
J Am Chem Soc ; 132(31): 10903-10, 2010 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-20681724

RESUMO

Understanding the detailed relationship between nanoparticle structure and activity remains a significant challenge for the field of surface-enhanced Raman spectroscopy. To this end, the structural and optical properties of individual plasmonic nanoantennas comprised of Au nanoparticle assemblies that are coated with organic reporter molecules and encapsulated by a SiO(2) shell have been determined using correlated transmission electron microscopy (TEM), dark-field Rayleigh scattering microscopy, surface-enhanced Raman scattering (SERS) microscopy, and finite element method (FEM) calculations. The distribution of SERS enhancement factors (EFs) for a structurally and optically diverse set of nanoantennas is remarkably narrow. For a collection of 30 individual nanoantennas ranging from dimers to heptamers, the EFs vary by less than 2 orders of magnitude. Furthermore, the EFs for the hot-spot-containing nanoparticles are uncorrelated to aggregation state and localized surface plasmon resonance (LSPR) wavelength but are crucially dependent on the size of the interparticle gap. This study demonstrates that the creation of hot spots, where two particles are in subnanometer proximity or have coalesced to form crevices, is paramount to achieving maximum SERS enhancements.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Dimerização , Dióxido de Silício/química , Análise Espectral Raman
3.
ACS Nano ; 3(10): 2859-69, 2009 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-19856975

RESUMO

This Nano Focus article reviews recent developments in surface-enhanced Raman spectroscopy (SERS) and its application to homeland security. It is based on invited talks given at the "Nanorods and Microparticles for Homeland Security" symposium, which was organized by one of the authors and presented at the 238th ACS National Meeting and Exhibition in Washington, DC. The three-day symposium included approximately 25 experts from academia, industry, and national laboratories and included both SERS and non-SERS approaches to detection of chemical and biological substances relevant to homeland security, as well as fundamental advances. Here, we focus on SERS and how it is uniquely positioned to have an impact in a field whose importance is increasing rapidly. We describe some technical challenges that remain and offer a glimpse of what form solutions might take.


Assuntos
Medidas de Segurança , Análise Espectral Raman/métodos , Armas Biológicas , Humanos , Propriedades de Superfície
4.
Proc Natl Acad Sci U S A ; 106(32): 13511-6, 2009 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-19666578

RESUMO

Raman spectroscopy is a newly developed, noninvasive preclinical imaging technique that offers picomolar sensitivity and multiplexing capabilities to the field of molecular imaging. In this study, we demonstrate the ability of Raman spectroscopy to separate the spectral fingerprints of up to 10 different types of surface enhanced Raman scattering (SERS) nanoparticles in a living mouse after s.c. injection. Based on these spectral results, we simultaneously injected the five most intense and spectrally unique SERS nanoparticles i.v. to image their natural accumulation in the liver. All five types of SERS nanoparticles were successfully identified and spectrally separated using our optimized noninvasive Raman imaging system. In addition, we were able to linearly correlate Raman signal with SERS concentration after injecting four spectrally unique SERS nanoparticles either s.c. (R(2) = 0.998) or i.v. (R(2) = 0.992). These results show great potential for multiplexed imaging in living subjects in cases in which several targeted SERS probes could offer better detection of multiple biomarkers associated with a specific disease.


Assuntos
Imageamento Tridimensional/métodos , Nanopartículas/química , Análise Espectral Raman , Animais , Feminino , Injeções Intravenosas , Injeções Subcutâneas , Fígado/metabolismo , Camundongos , Camundongos Nus , Nanopartículas/administração & dosagem , Propriedades de Superfície
5.
Anal Bioanal Chem ; 394(7): 1819-25, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19305981

RESUMO

Finite element method calculations were carried out to determine extinction spectra and the electromagnetic (EM) contributions to surface-enhanced Raman spectroscopy (SERS) for 90-nm Au nanoparticle dimers modeled after experimental nanotags. The calculations revealed that the EM properties depend significantly on the junction region, specifically the distance between the nanoparticles for spacings of less than 1 nm. For extinction spectra, spacings below 1 nm lead to maxima that are strongly red-shifted from the 600-nm plasmon maximum associated with an isolated nanoparticle. This result agrees qualitatively well with experimental transmission electron microscopy images and localized surface plasmon resonance spectra that are also presented. The calculations further revealed that spacings below 0.5 nm, and especially a slight fusing of the nanoparticles to give tiny crevices, leads to EM enhancements of 10(10) or greater. Assuming a uniform coating of SERS molecules around both nanoparticles, we determined that regardless of the separation, the highest EM fields always dominate the SERS signal. In addition, we determined that for small separations less than 3% of the molecules always contribute to greater than 90% of the signal.


Assuntos
Análise de Elementos Finitos , Ouro/química , Nanopartículas Metálicas/química , Análise Espectral Raman/métodos , Dimerização , Fenômenos Eletromagnéticos , Teste de Materiais , Microscopia Eletrônica de Transmissão , Nanotecnologia , Tamanho da Partícula , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Ressonância de Plasmônio de Superfície , Propriedades de Superfície
6.
J Am Chem Soc ; 130(51): 17214-5, 2008 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-19053187

RESUMO

A novel, homogeneous SERS-based cell detection assay was developed for rapid and direct enumeration of circulating tumor cells in the presence of whole blood. Magnetic beads and SERS tags were respectively conjugated to EpCAM and her2 antibodies for the capture and detection of approximately 50 tumor cells/mL in the presence of whole blood in less than 1 h.


Assuntos
Sangue/metabolismo , Células Neoplásicas Circulantes/metabolismo , Análise Espectral Raman/métodos , Antígenos de Neoplasias/química , Apoptose , Moléculas de Adesão Celular/química , Linhagem Celular , Relação Dose-Resposta a Droga , Molécula de Adesão da Célula Epitelial , Humanos , Magnetismo , Microscopia Eletrônica de Transmissão , Modelos Biológicos , Espalhamento de Radiação , Transdução de Sinais , Propriedades de Superfície
7.
Faraday Discuss ; 132: 321-8, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16833126
8.
Anal Bioanal Chem ; 384(3): 658-66, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16421712

RESUMO

Single-nucleotide polymorphisms (SNP) are the most common form of sequence variation in the human genome. Large-scale studies demand high-throughput SNP genotyping platforms. Here we demonstrate the potential of encoded nanowires for use in a particles-based universal array for high-throughput SNP genotyping. The particles are encoded sub-micron metallic nanorods manufactured by electroplating inert metals such as gold and silver into templates and releasing the resulting striped nanoparticles. The power of this technology is that the particles are intrinsically encoded by virtue of the different reflectivity of adjacent metal stripes, enabling the generation of many thousands of unique encoded substrates. Using SNP found within the cytochrome P450 gene family, and a universal short oligonucleotide ligation strategy, we have demonstrated the simultaneous genotyping of 15 SNP; a format requiring discrimination of 30 encoded nanowires (one per allele). To demonstrate applicability to real-world applications, 160 genotypes were determined from multiplex PCR products from 20 genomic DNA samples.


Assuntos
DNA/análise , Nanopartículas/química , Nanotecnologia/métodos , Polimorfismo de Nucleotídeo Único/genética , DNA/genética , Genótipo , Humanos , Nanotubos/química , Reação em Cadeia da Polimerase/métodos , Sensibilidade e Especificidade
9.
Methods Mol Biol ; 303: 73-83, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15923676

RESUMO

We have developed striped metal nanoparticles, Nanobarcodes particles, which can act as encoded substrates in multiplexed assays. These particles are metallic, encodeable, machine-readable, durable, submicron-sized tags. The power of this technology is that the particles are intrinsically encoded by virtue of the difference in reflectivity of adjacent metal stripes. This chapter describes protocols for the attachment of biological molecules, and the subsequent use of the Nanobarcodes particles in bioassays.


Assuntos
Perfilação da Expressão Gênica/métodos , Nanoestruturas/química , Nanotecnologia/métodos , Oligonucleotídeos/química , Animais , Humanos
10.
Nanobiotechnology ; 1(4): 327-335, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-32218710

RESUMO

In this paper we describe a molecular beacon format assay in which encoded nanowire particles are used to achieve multiplexing. We demonstrate this principle with the detection of five viral pathogens; Hepatitis A virus, Hepatitis C virus, West Nile Virus, Human Immune Deficiency virus and Severe Acute Respiratory Syndrome virus. Oligonucleotides are designed complementary to a target sequence of interest containing a 3' universal fluorescence dye. A 5' thiol causes the oligonucleotides to self-assemble onto the metal nanowire. The single-stranded oligonucleotide contains a self-complementary hairpin stem sequence of 10 bases that forces the 3' fluorophore to come into contact with the metallic nanowire surface, thereby quenching the fluorescence. Upon addition of target DNA, there is hybridization with the complementary oligonucleotides. The resulting DNA hybrid is rigid, unfolds the hairpin structure, and causes the fluorophore to be moved away from the surface such that it is no longer quenched. By using differently encoded nanowires, each conjugated with a different oligonucleotide sequence, multiplexed DNA assays are possible using a single fluorophore, from a multiplexed RT-PCR reaction.

11.
Curr Opin Chem Biol ; 7(5): 609-15, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14580566

RESUMO

This review covers the emerging field of nanobiotechnology, in which nanoparticles are applied to the analysis of biomolecules. Nanoparticles can be used in a variety of bioanalytical formats, and this review discusses four classes of use. First, nanoparticles as quantitation tags, such as the optical detection of quantum dots and the electrochemical detection of metallic nanoparticles. Second, encoded nanoparticles as substrates for multiplexed bioassays, such as striped metallic nanoparticles. Third, nanoparticles that leverage signal transduction, for example in colloidal gold-based aggregation assays. Fourth, functional nanoparticles that exploit specific physical or chemical properties of nanoparticles to carry out novel functions, such as the catalysis of a biological reaction. In addition, the review discusses the next generation of nanoparticles that will be utilized in the life sciences, such as nanodots and carbon nanotubes.


Assuntos
Técnicas Biossensoriais , Nanotecnologia/métodos , Biotecnologia/métodos , Pontos Quânticos , Transdução de Sinais
12.
Anal Chem ; 74(10): 2240-7, 2002 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-12038747

RESUMO

In this report, we present data demonstrating that cylindrical metallic particles, with various submicrometer striping patterns, may be readily distinguished in an optical microscope. Accurate particle identification is discussed relative to synthesis reproducibility and the limitations of optical microscopes. Results from a library of these particles, of which over 100 different striping patterns have been produced, are presented. For these particles, made with Au and Ag stripes, more than 70 patterns may be identified with greater than 90% accuracy. The ability to chemically modify the surface of these particles, making them useful for bioanalytical measurements, is also demonstrated. Finally, we discuss improvements in our manufacturing and identification processes that will lead to both larger numbers of striping patterns and improved identification accuracy.


Assuntos
Processamento Eletrônico de Dados/normas , Metais/normas , Nanotecnologia , Diagnóstico por Imagem/normas , Processamento Eletrônico de Dados/instrumentação , Processamento Eletrônico de Dados/métodos , Microscopia/métodos , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...