Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Ther ; 21(2): 371-381, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34866044

RESUMO

Treatment of advanced ovarian cancer using PD-1/PD-L1 immune checkpoint blockade shows promise; however, current clinical trials are limited by modest response rates. Radiotherapy has been shown to synergize with PD-1/PD-L1 blockade in some cancers but has not been utilized in advanced ovarian cancer due to toxicity associated with conventional abdominopelvic irradiation. Ultrahigh-dose rate (FLASH) irradiation has emerged as a strategy to reduce radiation-induced toxicity, however, the immunomodulatory properties of FLASH irradiation remain unknown. Here, we demonstrate that single high-dose abdominopelvic FLASH irradiation promoted intestinal regeneration and maintained tumor control in a preclinical mouse model of ovarian cancer. Reduced tumor burden in conventional and FLASH-treated mice was associated with an early decrease in intratumoral regulatory T cells and a late increase in cytolytic CD8+ T cells. Compared with conventional irradiation, FLASH irradiation increased intratumoral T-cell infiltration at early timepoints. Moreover, FLASH irradiation maintained the ability to increase intratumoral CD8+ T-cell infiltration and enhance the efficacy of αPD-1 therapy in preclinical models of ovarian cancer. These data highlight the potential for FLASH irradiation to improve the therapeutic efficacy of checkpoint inhibition in the treatment of ovarian cancer.


Assuntos
Neoplasias Ovarianas , Receptor de Morte Celular Programada 1 , Animais , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Camundongos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/radioterapia , Receptor de Morte Celular Programada 1/antagonistas & inibidores
2.
J Clin Invest ; 131(16)2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34396988

RESUMO

Ovarian cancer is the leading cause of gynecological malignancy-related deaths, due to its widespread intraperitoneal metastases and acquired chemoresistance. Mesothelial cells are an important cellular component of the ovarian cancer microenvironment that promote metastasis. However, their role in chemoresistance is unclear. Here, we investigated whether cancer-associated mesothelial cells promote ovarian cancer chemoresistance and stemness in vitro and in vivo. We found that osteopontin is a key secreted factor that drives mesothelial-mediated ovarian cancer chemoresistance and stemness. Osteopontin is a secreted glycoprotein that is clinically associated with poor prognosis and chemoresistance in ovarian cancer. Mechanistically, ovarian cancer cells induced osteopontin expression and secretion by mesothelial cells through TGF-ß signaling. Osteopontin facilitated ovarian cancer cell chemoresistance via the activation of the CD44 receptor, PI3K/AKT signaling, and ABC drug efflux transporter activity. Importantly, therapeutic inhibition of osteopontin markedly improved the efficacy of cisplatin in both human and mouse ovarian tumor xenografts. Collectively, our results highlight mesothelial cells as a key driver of ovarian cancer chemoresistance and suggest that therapeutic targeting of osteopontin may be an effective strategy for enhancing platinum sensitivity in ovarian cancer.


Assuntos
Osteopontina/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Epitélio/efeitos dos fármacos , Epitélio/metabolismo , Epitélio/patologia , Feminino , Humanos , Camundongos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Organoides/efeitos dos fármacos , Organoides/metabolismo , Organoides/patologia , Osteopontina/antagonistas & inibidores , Neoplasias Ovarianas/patologia , Comunicação Parácrina/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Sci Rep ; 10(1): 21600, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33303827

RESUMO

Radiation therapy is the most effective cytotoxic therapy for localized tumors. However, normal tissue toxicity limits the radiation dose and the curative potential of radiation therapy when treating larger target volumes. In particular, the highly radiosensitive intestine limits the use of radiation for patients with intra-abdominal tumors. In metastatic ovarian cancer, total abdominal irradiation (TAI) was used as an effective postsurgical adjuvant therapy in the management of abdominal metastases. However, TAI fell out of favor due to high toxicity of the intestine. Here we utilized an innovative preclinical irradiation platform to compare the safety and efficacy of TAI ultra-high dose rate FLASH irradiation to conventional dose rate (CONV) irradiation in mice. We demonstrate that single high dose TAI-FLASH produced less mortality from gastrointestinal syndrome, spared gut function and epithelial integrity, and spared cell death in crypt base columnar cells compared to TAI-CONV irradiation. Importantly, TAI-FLASH and TAI-CONV irradiation had similar efficacy in reducing tumor burden while improving intestinal function in a preclinical model of ovarian cancer metastasis. These findings suggest that FLASH irradiation may be an effective strategy to enhance the therapeutic index of abdominal radiotherapy, with potential application to metastatic ovarian cancer.


Assuntos
Trato Gastrointestinal/efeitos da radiação , Neoplasias Ovarianas/radioterapia , Lesões Experimentais por Radiação/prevenção & controle , Radioterapia/métodos , Animais , Feminino , Trato Gastrointestinal/lesões , Trato Gastrointestinal/patologia , Camundongos , Camundongos Endogâmicos C57BL , Radioterapia/efeitos adversos
4.
Cancer Res ; 79(9): 2271-2284, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30862717

RESUMO

Peritoneal metastases are the leading cause of morbidity and mortality in high-grade serous ovarian cancer (HGSOC). Accumulating evidence suggests that mesothelial cells are an important component of the metastatic microenvironment in HGSOC. However, the mechanisms by which mesothelial cells promote metastasis are unclear. Here, we report that the HGSOC tumor-mesothelial niche was hypoxic, and hypoxic signaling enhanced collagen I deposition by mesothelial cells. Specifically, hypoxic signaling increased expression of lysyl oxidase (LOX) in mesothelial and ovarian cancer cells to promote collagen crosslinking and tumor cell invasion. The mesothelial niche was enriched with fibrillar collagen in human and murine omental metastases. Pharmacologic inhibition of LOX reduced tumor burden and collagen remodeling in murine omental metastases. These findings highlight an important role for hypoxia and mesothelial cells in the modification of the extracellular matrix and tumor invasion in HGSOC. SIGNIFICANCE: This study identifies HIF/LOX signaling as a potential therapeutic target to inhibit collagen remodeling and tumor progression in HGSOC.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/9/2271/F1.large.jpg.


Assuntos
Colágeno/metabolismo , Cistadenocarcinoma Seroso/secundário , Epitélio/fisiopatologia , Matriz Extracelular/metabolismo , Hipóxia/fisiopatologia , Neoplasias Ovarianas/patologia , Neoplasias Peritoneais/secundário , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Apoptose , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proliferação de Células , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Peritoneais/genética , Neoplasias Peritoneais/metabolismo , Prognóstico , Proteína-Lisina 6-Oxidase/genética , Proteína-Lisina 6-Oxidase/metabolismo , Transdução de Sinais , Células Tumorais Cultivadas , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Mol Oncol ; 13(2): 153-170, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30289618

RESUMO

Poly(ADP-ribose) polymerase 1 inhibitors alone or in combination with DNA damaging agents are promising clinical drugs in the treatment of cancer. However, there is a need to understand the molecular mechanisms of resistance to PARP1 inhibitors. Expression of HMGA2 in cancer is associated with poor prognosis for patients. Here, we investigated the novel relationship between HMGA2 and PARP1 in DNA damage-induced PARP1 activity. We used human triple-negative breast cancer and fibrosarcoma cell lines to demonstrate that HMGA2 colocalizes and interacts with PARP1. High cellular HMGA2 levels correlated with increased DNA damage-induced PARP1 activity, which was dependent on functional DNA-binding AT-hook domains of HMGA2. HMGA2 inhibited PARP1 trapping to DNA and counteracted the cytotoxic effect of PARP inhibitors. Consequently, HMGA2 decreased caspase 3/7 induction and increased cell survival upon treatment with the alkylating methyl methanesulfonate alone or in combination with the PARP inhibitor AZD2281 (olaparib). HMGA2 increased mitochondrial oxygen consumption rate and spare respiratory capacity and increased NAMPT levels, suggesting metabolic support for enhanced PARP1 activity upon DNA damage. Our data showed that expression of HMGA2 in cancer cells reduces sensitivity to PARP inhibitors and suggests that targeting HMGA2 in combination with PARP inhibition may be a promising new therapeutic approach.


Assuntos
Proteína HMGA2/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Motivos AT-Hook , Sequência de Aminoácidos , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Respiração Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citoproteção/efeitos dos fármacos , Dano ao DNA , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteína HMGA2/química , Humanos , Metanossulfonato de Metila , Camundongos , Mitocôndrias/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Ftalazinas/farmacologia , Piperazinas/farmacologia , Poli Adenosina Difosfato Ribose/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Ligação Proteica , Neoplasias de Mama Triplo Negativas/patologia
6.
Mol Oncol ; 11(8): 1078-1098, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28500786

RESUMO

The multikinase inhibitor and FDA-approved drug dovitinib (Dov) crosses the blood-brain barrier and was recently used as single drug application in clinical trials for GB patients with recurrent disease. The Dov-mediated molecular mechanisms in GB cells are unknown. We used GB patient cells and cell lines to show that Dov downregulated the stem cell protein Lin28 and its target high-mobility group protein A2 (HMGA2). The Dov-induced reduction in pSTAT3Tyr705 phosphorylation demonstrated that Dov negatively affects the STAT3/LIN28/Let-7/HMGA2 regulatory axis in GB cells. Consistent with the known function of LIN28 and HMGA2 in GB self-renewal, Dov reduced GB tumor sphere formation. Dov treatment also caused the downregulation of key base excision repair factors and O6 -methylguanine-DNA-methyltransferase (MGMT), which are known to have important roles in the repair of temozolomide (TMZ)-induced alkylating DNA damage. Combined Dov/TMZ treatment enhanced TMZ-induced DNA damage as quantified by nuclear γH2AX foci and comet assays, and increased GB cell apoptosis. Pretreatment of GB cells with Dov ('Dov priming') prior to TMZ treatment reduced GB cell viability independent of p53 status. Sequential treatment involving 'Dov priming' and alternating treatment cycles with TMZ and Dov substantially reduced long-term GB cell survival in MGMT+ patient GB cells. Our results may have immediate clinical implications to improve TMZ response in patients with LIN28+ /HMGA2+ GB, independent of their MGMT methylation status.


Assuntos
Benzimidazóis/farmacologia , Dacarbazina/análogos & derivados , Glioblastoma/tratamento farmacológico , Quinolonas/farmacologia , Benzimidazóis/agonistas , Linhagem Celular Tumoral , Dacarbazina/agonistas , Dacarbazina/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Proteínas de Neoplasias/biossíntese , Quinolonas/agonistas , Temozolomida
7.
Oncotarget ; 7(11): 12761-82, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26799419

RESUMO

The non-histone chromatin binding protein High Mobility Group AT-hook protein 2 (HMGA2) plays important roles in the repair and protection of genomic DNA in embryonic stem cells and cancer cells. Here we show that HMGA2 localizes to mammalian telomeres and enhances telomere stability in cancer cells. We present a novel interaction of HMGA2 with the key shelterin protein TRF2. We found that the linker (L1) region of HMGA2 contributes to this interaction but the ATI-L1-ATII molecular region of HMGA2 is required for strong interaction with TRF2. This interaction was independent of HMGA2 DNA-binding and did not require the TRF2 interacting partner RAP1 but involved the homodimerization and hinge regions of TRF2. HMGA2 retained TRF2 at telomeres and reduced telomere-dysfunction despite induced telomere stress. Silencing of HMGA2 resulted in (i) reduced binding of TRF2 to telomere DNA as observed by ChIP, (ii) increased telomere instability and (iii) the formation of telomere dysfunction-induced foci (TIF). This resulted in increased telomere aggregation, anaphase bridges and micronuclei. HMGA2 prevented ATM-dependent pTRF2T188 phosphorylation and attenuated signaling via the telomere specific ATM-CHK2-CDC25C DNA damage signaling axis. In summary, our data demonstrate a unique and novel role of HMGA2 in telomere protection and promoting telomere stability in cancer cells. This identifies HMGA2 as a new therapeutic target for the destabilization of telomeres in HMGA2+ cancer cells.


Assuntos
Proteína HMGA2/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Telômero/patologia , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Linhagem Celular Tumoral , Humanos , Estabilidade Proteica , Transdução de Sinais/fisiologia , Telômero/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-24723911

RESUMO

The two main reasons for death of cancer patients, tumor recurrence and metastasis, are multi-stage cellular processes that involve increased cell plasticity and coincide with elevated resistance to anti-cancer treatments. Epithelial-to-mesenchymal transition (EMT) is a key contributor to metastasis in many cancer types, including thyroid cancer and is known to confer stem cell-like properties onto cancer cells. This review provides an overview of molecular mechanisms and factors known to contribute to cancer cell plasticity and capable of enhancing cancer cell resistance to radio- and chemotherapy. We elucidate the role of DNA repair mechanisms in contributing to therapeutic resistance, with a special emphasis on thyroid cancer. Next, we explore the emerging roles of autophagy and damage-associated molecular pattern responses in EMT and chemoresistance in tumor cells. Finally, we demonstrate how cancer cells, including thyroid cancer cells, can highjack the oncofetal nucleoprotein high-mobility group A2 to gain increased transformative cell plasticity, prevent apoptosis, and enhance metastasis of chemoresistant tumor cells.

9.
Cell Rep ; 6(4): 684-97, 2014 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-24508460

RESUMO

Maintaining genome integrity requires the accurate and complete replication of chromosomal DNA. This is of the utmost importance for embryonic stem cells (ESCs), which differentiate into cells of all lineages, including germ cells. However, endogenous and exogenous factors frequently induce stalling of replication forks in every cell cycle, which can trigger mutations and chromosomal instabilities. We show here that the oncofetal, nonhistone chromatin factor HMGA2 equips cells with a highly effective first-line defense mechanism against endonucleolytic collapse of stalled forks. This fork-stabilizing function most likely employs scaffold formation at branched DNA via multiple DNA-binding domains. Moreover, HMGA2 works independently of other human factors in two heterologous cell systems to prevent DNA strand breaks. This fork chaperone function seemingly evolved to preserve ESC genome integrity. It is hijacked by tumor (stem) cells to also guard their genomes against DNA-damaging agents widely used to treat cancer patients.


Assuntos
Replicação do DNA , Células-Tronco Embrionárias/metabolismo , Proteína HMGA2/metabolismo , Neoplasias/metabolismo , Animais , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Instabilidade Genômica , Proteína HMGA2/genética , Humanos , Camundongos , Neoplasias/genética
10.
Thyroid ; 24(2): 296-304, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23819464

RESUMO

BACKGROUND: Over the last decade, annual incidence rates for thyroid cancer have been among the highest of all cancers in the Western world. However, the genomic mechanisms impacting thyroid carcinogenesis remain elusive. METHODS: We employed an established mouse model of follicular thyroid cancer (FTC) with a homozygous proline to valine mutation (Thrb(PV/PV)) in the thyroid receptor ß1 (TRß1) and applied quantitative three-dimensional (3D) telomere analysis to determine 3D telomeric profiles in Thrb(PV)(/PV), Thrb(PV/)(+), and Thrb(+/+) mouse thyrocytes before and after histological presentation of FTC. RESULTS: Using quantitative fluorescent in situ hybridization (Q-FISH) and TeloView™ image analysis, we found altered telomeric signatures specifically in mutant mouse thyrocytes. As early as 1 month of age, Thrb(PV/PV) mouse thyrocytes showed more telomeres than normal and heterozygous age-matched counterparts. Importantly, at the very early age of 1 month, 3D telomeric profiles of Thrb(PV/PV) thyrocyte nuclei reveal genetic heterogeneity with several nuclei populations exhibiting different telomere numbers, suggestive of various degrees of aneuploidy within the same animal. This was detected exclusively in Thrb(PV/PV) mice well before the presentation of histological signs of thyroid carcinoma. CONCLUSIONS: We identified quantitative 3D telomere analysis as a novel tool for early detection and monitoring of thyrocyte chromosomal (in)stability. This technique has the potential to identify human patients at risk for developing thyroid carcinoma.


Assuntos
Adenocarcinoma Folicular/genética , Telômero/química , Receptores beta dos Hormônios Tireóideos/genética , Adenocarcinoma Folicular/patologia , Animais , Proliferação de Células , Feminino , Hibridização in Situ Fluorescente , Masculino , Camundongos , Glândula Tireoide/citologia , Glândula Tireoide/patologia
11.
Neoplasia ; 15(3): 263-80, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23479505

RESUMO

The non-histone chromatin binding protein high mobility group AT-hook 2 (HMGA2) is expressed in stem cells and many cancer cells, including tumor initiating cells, but not translated in normal human somatic cells. The presence of HMGA2 is correlated with advanced neoplastic disease and poor prognosis for patients. We had previously demonstrated a role of HMGA2 in DNA repair pathways. In the present study, we employed different human tumor cell models with endogenous and exogenous expression of HMGA2 and show that upon DNA damage, the presence of HMGA2 caused an increased and sustained phosphorylation of the ataxia telangiectasia and Rad3-related kinase (ATR) and its downstream target checkpoint kinase 1 (CHK1). The presence of activated pCHK1(Ser296) coincided with prolonged G2/M block and increased tumor cell survival, which was enhanced further in the presence of HMGA2. Our study, thus, identifies a novel relationship between the ATR-CHK1 DNA damage response pathway and HMGA2, which may support the DNA repair function of HMGA2 in cancer cells. Furthermore, our data provide a rationale for the use of inhibitors to ATR or CHK1 and HMGA2 in the treatment of HMGA2-positive human cancer cells.


Assuntos
Apoptose , Proteínas de Ciclo Celular/metabolismo , Proteína HMGA2/metabolismo , Neoplasias/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteínas Mutadas de Ataxia Telangiectasia , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem , Dano ao DNA/efeitos dos fármacos , Expressão Gênica , Proteína HMGA2/genética , Humanos , Hidroxiureia/farmacologia , Neoplasias/genética , Fosforilação , Ligação Proteica , Interferência de RNA , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...