Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-513379

RESUMO

SARS-CoV-2, the causative agent of COVID-19, has been responsible for a global pandemic. Monoclonal antibodies have been used as antiviral therapeutics, but have been limited in efficacy by viral sequence variability in emerging variants of concern (VOCs), and in deployment by the need for high doses. In this study, we leverage the MULTI-specific, multi-Affinity antiBODY (Multabody, MB) platform, derived from the human apoferritin protomer, to drive the multimerization of antibody fragments and generate exceptionally potent and broad SARS-CoV-2 neutralizers. CryoEM revealed a high degree of homogeneity for the core of these engineered antibody-like molecules at 2.1 [A] resolution. We demonstrate that neutralization potency improvements of the MB over corresponding IgGs translates into superior in vivo protection: in the SARS-CoV-2 mouse challenge model, comparable in vivo protection was achieved for the MB delivered at 30x lower dose compared to the corresponding IgGs. Furthermore, we show how MBs potently neutralize SARS-CoV-2 VOCs by leveraging augmented avidity, even when corresponding IgGs lose their ability to neutralize potently. Multiple mAb specificities could also be combined into a single MB molecule to expand the neutralization breadth beyond SARS-CoV-2 to other sarbecoviruses. Our work demonstrates how avidity and multi-specificity combined can be leveraged to confer protection and resilience against viral diversity that exceeds that of traditional monoclonal antibody therapies.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-450244

RESUMO

SARS-CoV-2, depends on host cell components for replication, therefore the identification of virus-host dependencies offers an effective way to elucidate mechanisms involved in viral infection. Such host factors may be necessary for infection and replication of SARS-CoV-2 and, if druggable, presents an attractive strategy for anti-viral therapy. We performed genome wide CRISPR knockout screens in Vero E6 cells and 4 human cell lines including Calu-3, Caco-2, Hek293 and Huh7 to identify genetic regulators of SARS-CoV-2 infection. Our findings identified only ACE2, the cognate SARS-CoV-2 entry receptor, as a common host dependency factor across all cell lines, while all other host genes identified were cell line specific including known factors TMPRSS2 and CTSL. Several of the discovered host-dependency factors converged on pathways involved in cell signalling, lipid metabolism, immune pathways and chromatin modulation. Notably, chromatin modulator genes KMT2C and KDM6A in Calu-3 cells had the strongest impact in preventing SARS-CoV-2 infection when perturbed. Overall, the network of host factors that have been identified will be broadly applicable to understanding the impact of SARS-CoV-2 on human cells and facilitate the development of host-directed therapies. IN BRIEFSARS-CoV-2, depends on host cell components for infection and replication. Genome-wide CRISPR screens were performed in multiple human cell lines to elucidate common host dependencies required for SARS-CoV-2 infection. Only ACE2, the cognate SARS-CoV-2 entry receptor, was common amongst cell lines, while all other host genes identified were cell line specific, several of which converged on pathways involved in cell signalling, lipid metabolism, immune pathways, and chromatin modulation. Overall, a network of host factors was identified that will be broadly applicable to understanding the impact of SARS-CoV-2 on human cells and facilitate productive targeting of host genes and pathways. HIGHLIGHTS- Genome-wide CRISPR screens for SARS-CoV-2 in multiple human cell lines - Identification of wide-ranging cell-type dependent genetic dependencies for SARS-CoV-2 infection - ACE2 is the only common host factor identified across different cell types

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-439006

RESUMO

The COVID-19 pandemic has affected more than 120 million people and resulted in over 2.8 million deaths worldwide. Several COVID-19 vaccines have been approved for emergency use in humans and are being used in many countries. However, all of the approved vaccines are administered by intramuscular injection and this may not prevent upper airway infection or viral transmission. Here, we describe intranasal immunization of a COVID-19 vaccine delivered by a novel platform, the helper-dependent adenoviral (HD-Ad) vector. Since HD-Ad vectors are devoid of adenoviral coding sequences, they have a superior safety profile and a large cloning capacity for transgenes. The vaccine (HD-Ad_RBD) codes for the receptor binding domain (RBD) of the SARS-CoV-2 spike protein and intranasal immunization induced robust mucosal and systemic immunity. Moreover, intranasal immunization of K18-hACE2 mice with HD-Ad_RBD using a prime-boost regimen, resulted in complete protection of the upper respiratory tract against SARS-CoV-2 infection. As such, intranasal immunization based on the HD-Ad vector promises to provide a powerful platform for constructing highly effective vaccines targeting SARS-CoV-2 and its emerging variants.

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-341636

RESUMO

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes Coronavirus Disease 2019 (COVID-19), has caused a global pandemic. Antibodies are powerful biotherapeutics to fight viral infections; however, discovery of the most potent and broadly acting clones can be lengthy. Here, we used the human apoferritin protomer as a modular subunit to drive oligomerization of antibody fragments and transform antibodies targeting SARS-CoV-2 into exceptionally potent neutralizers. Using this platform, half-maximal inhibitory concentration (IC50) values as low as 9 x 10-14 M were achieved as a result of up to 10,000-fold potency enhancements. Combination of three different antibody specificities and the fragment crystallizable (Fc) domain on a single multivalent molecule conferred the ability to overcome viral sequence variability together with outstanding potency and Ig-like in vivo bioavailability. This MULTi-specific, multi-Affinity antiBODY (Multabody; or MB) platform contributes a new class of medical countermeasures against COVID-19 and an efficient approach to rapidly deploy potent and broadly-acting therapeutics against infectious diseases of global health importance. One Sentence Summarymultimerization platform transforms antibodies emerging from discovery screens into potent neutralizers that can overcome SARS-CoV-2 sequence diversity.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20166553

RESUMO

While the antibody response to SARS-CoV-2 has been extensively studied in blood, relatively little is known about the mucosal immune response and its relationship to systemic antibody levels. Since SARS-CoV-2 initially replicates in the upper airway, the antibody response in the oral cavity is likely an important parameter that influences the course of infection, but how it correlates to the antibody response in serum is not known. Here, we profile by enzyme linked immunosorbent assays (ELISAs) IgG, IgA and IgM responses to the SARS-CoV-2 spike protein (full length trimer) and its receptor binding domain (RBD) in serum (n=496) and saliva (n=90) of acute and convalescent patients with laboratory-diagnosed COVID-19 ranging from 3-115 days post-symptom onset (PSO), compared to negative controls. Anti-CoV-2 antibody responses were readily detected in serum and saliva, with peak IgG levels attained by 16-30 days PSO. Whereas anti-CoV-2 IgA and IgM antibodies rapidly decayed, IgG antibodies remained relatively stable up to 105 days PSO in both biofluids. In a surrogate neutralization ELISA (snELISA), neutralization activity peaks by 31-45 days PSO and slowly declines, though a clear drop is detected at the last blood draw (105-115 days PSO). Lastly, IgG, IgM and to a lesser extent IgA responses to spike and RBD in the serum positively correlated with matched saliva samples. This study confirms that systemic and mucosal humoral IgG antibodies are maintained in the majority of COVID-19 patients for at least 3 months PSO. Based on their correlation with each other, IgG responses in saliva may serve as a surrogate measure of systemic immunity. One Sentence SummaryIn this manuscript, we report evidence for sustained SARS-CoV-2-specific IgG and transient IgA and IgM responses both at the site of infection (mucosae) and systemically in COVID-19 patients over 3 months and suggest that saliva could be used as an alternative biofluid for monitoring IgG to SARS-CoV-2 spike and RBD antigens.

6.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-037382

RESUMO

SARS-CoV-2 emerged in December 2019 in Wuhan, China and has since infected over 1.5 million people, of which over 107,000 have died. As SARS-CoV-2 spreads across the planet, speculations remain about the range of human cells that can be infected by SARS-CoV-2. In this study, we report the isolation of SARS-CoV-2 from two COVID-19 patients in Toronto, Canada. We determined the genomic sequences of the two isolates and identified single nucleotide changes in representative populations of our virus stocks. More importantly, we tested a wide range of human immune cells for productive infection with SARS-CoV-2. Here we confirm that human primary peripheral blood mononuclear cells (PBMCs) are not permissive to SARS-CoV-2. As SARS-CoV-2 continues to spread globally, it is essential to monitor small nucleotide polymorphisms in the virus and to continue to isolate circulating viruses to determine cell susceptibility and pathogenicity using in vitro and in vivo infection models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...