Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 4201, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452024

RESUMO

While immunologic correlates of COVID-19 have been widely reported, their associations with post-acute sequelae of COVID-19 (PASC) remain less clear. Due to the wide array of PASC presentations, understanding if specific disease features associate with discrete immune processes and therapeutic opportunities is important. Here we profile patients in the recovery phase of COVID-19 via proteomics screening and machine learning to find signatures of ongoing antiviral B cell development, immune-mediated fibrosis, and markers of cell death in PASC patients but not in controls with uncomplicated recovery. Plasma and immune cell profiling further allow the stratification of PASC into inflammatory and non-inflammatory types. Inflammatory PASC, identifiable through a refined set of 12 blood markers, displays evidence of ongoing neutrophil activity, B cell memory alterations, and building autoreactivity more than a year post COVID-19. Our work thus helps refine PASC categorization to aid in both therapeutic targeting and epidemiological investigation of PASC.


Assuntos
COVID-19 , Neutrófilos , Humanos , Síndrome de COVID-19 Pós-Aguda , Inflamação , Antivirais , Progressão da Doença
3.
Stem Cell Reports ; 18(1): 237-253, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36563689

RESUMO

In the brain, the complement system plays a crucial role in the immune response and in synaptic elimination during normal development and disease. Here, we sought to identify pathways that modulate the production of complement component 4 (C4), recently associated with an increased risk of schizophrenia. To design a disease-relevant assay, we first developed a rapid and robust 3D protocol capable of producing large numbers of astrocytes from pluripotent cells. Transcriptional profiling of these astrocytes confirmed the homogeneity of this population of dorsal fetal-like astrocytes. Using a novel ELISA-based small-molecule screen, we identified epigenetic regulators, as well as inhibitors of intracellular signaling pathways, able to modulate C4 secretion from astrocytes. We then built a connectivity map to predict and validate additional key regulatory pathways, including one involving c-Jun-kinase. This work provides a foundation for developing therapies for CNS diseases involving the complement cascade.


Assuntos
Astrócitos , Células-Tronco Pluripotentes Induzidas , Astrócitos/metabolismo , Células-Tronco , Feto , Células-Tronco Pluripotentes Induzidas/metabolismo
4.
Cell Syst ; 13(11): 911-923.e9, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36395727

RESUMO

Morphological and gene expression profiling can cost-effectively capture thousands of features in thousands of samples across perturbations by disease, mutation, or drug treatments, but it is unclear to what extent the two modalities capture overlapping versus complementary information. Here, using both the L1000 and Cell Painting assays to profile gene expression and cell morphology, respectively, we perturb human A549 lung cancer cells with 1,327 small molecules from the Drug Repurposing Hub across six doses, providing a data resource including dose-response data from both assays. The two assays capture both shared and complementary information for mapping cell state. Cell Painting profiles from compound perturbations are more reproducible and show more diversity but measure fewer distinct groups of features. Applying unsupervised and supervised methods to predict compound mechanisms of action (MOAs) and gene targets, we find that the two assays not only provide a partially shared but also a complementary view of drug mechanisms. Given the numerous applications of profiling in biology, our analyses provide guidance for planning experiments that profile cells for detecting distinct cell types, disease phenotypes, and response to chemical or genetic perturbations.


Assuntos
Perfilação da Expressão Gênica , Humanos , Perfilação da Expressão Gênica/métodos , Fenótipo
5.
Commun Biol ; 5(1): 1066, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207580

RESUMO

The phenotype of a cell and its underlying molecular state is strongly influenced by extracellular signals, including growth factors, hormones, and extracellular matrix proteins. While these signals are normally tightly controlled, their dysregulation leads to phenotypic and molecular states associated with diverse diseases. To develop a detailed understanding of the linkage between molecular and phenotypic changes, we generated a comprehensive dataset that catalogs the transcriptional, proteomic, epigenomic and phenotypic responses of MCF10A mammary epithelial cells after exposure to the ligands EGF, HGF, OSM, IFNG, TGFB and BMP2. Systematic assessment of the molecular and cellular phenotypes induced by these ligands comprise the LINCS Microenvironment (ME) perturbation dataset, which has been curated and made publicly available for community-wide analysis and development of novel computational methods ( synapse.org/LINCS_MCF10A ). In illustrative analyses, we demonstrate how this dataset can be used to discover functionally related molecular features linked to specific cellular phenotypes. Beyond these analyses, this dataset will serve as a resource for the broader scientific community to mine for biological insights, to compare signals carried across distinct molecular modalities, and to develop new computational methods for integrative data analysis.


Assuntos
Fator de Crescimento Epidérmico , Proteômica , Fator de Crescimento Epidérmico/farmacologia , Proteínas da Matriz Extracelular , Ligantes , Fenótipo
6.
Toxicol Sci ; 190(2): 227-241, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36161505

RESUMO

Butylated hydroxytoluene (BHT) is a synthetic antioxidant widely used in many industrial sectors. BHT is a well-studied compound for which there are many favorable regulatory decisions. However, a recent opinion by the French Agency for Food, Environmental and Occupational Health and Safety (ANSES) hypothesizes a role for BHT in endocrine disruption (ANSES (2021). This opinion is based on observations in mostly rat studies where changes to thyroid physiology are observed. Enzymatic induction of Cytochrome P450-mediated thyroid hormone catabolism has been proposed as a mechanism for these observations, however, a causal relationship has not been proven. Other evidence proposed in the document includes a read across argument to butylated hydroxyanisole (BHA), another Community Rolling Action Plan (CoRAP)-listed substance with endocrine disruption concerns. We tested the hypothesis that BHT is an endocrine disruptor by using a Next Generation Risk Assessment (NGRA) method. Four different cell lines: A549, HCC1428, HepG2, and MCF7 were treated with BHT and a series of BHT analogs at 5 different concentrations, RNA was isolated from cell extracts and run on the L1000 gene array platform. A toxicogenomics-based assessment was performed by comparing BHT's unique genomic signature to a large external database containing signatures of other compounds (including many known endocrine disruptors) to identify if any endocrine disruption-related modes of action (MoAs) are prevalent among BHT and other compounds with similar genomic signatures. In addition, we performed a toxicogenomics-based structure activity relationship (SAR) assessment of BHT and a series of structurally similar analogs to understand if endocrine disruption is a relevant MoA for chemicals that are considered suitable analogs to BHT using the P&G read across framework (Wu et al., 2010). Neither BHT nor any of its analogs connected to compounds that had endocrine activity for estrogens, androgens, thyroid, or steroidogenesis.


Assuntos
Hidroxitolueno Butilado , Disruptores Endócrinos , Ratos , Animais , Hidroxitolueno Butilado/toxicidade , Hidroxianisol Butilado , Antioxidantes , Estrogênios , Disruptores Endócrinos/toxicidade
8.
Bioinformatics ; 37(18): 2889-2895, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-33824954

RESUMO

MOTIVATION: Do machine learning methods improve standard deconvolution techniques for gene expression data? This article uses a unique new dataset combined with an open innovation competition to evaluate a wide range of approaches developed by 294 competitors from 20 countries. The competition's objective was to address a deconvolution problem critical to analyzing genetic perturbations from the Connectivity Map. The issue consists of separating gene expression of individual genes from raw measurements obtained from gene pairs. We evaluated the outcomes using ground-truth data (direct measurements for single genes) obtained from the same samples. RESULTS: We find that the top-ranked algorithm, based on random forest regression, beat the other methods in accuracy and reproducibility; more traditional gaussian-mixture methods performed well and tended to be faster, and the best deep learning approach yielded outcomes slightly inferior to the above methods. We anticipate researchers in the field will find the dataset and algorithms developed in this study to be a powerful research tool for benchmarking their deconvolution methods and a resource useful for multiple applications. AVAILABILITY AND IMPLEMENTATION: The data is freely available at clue.io/data (section Contests) and the software is on GitHub at https://github.com/cmap/gene_deconvolution_challenge. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Software , Reprodutibilidade dos Testes , Algoritmo Florestas Aleatórias , Biologia
9.
Nature ; 588(7837): 331-336, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33299191

RESUMO

Most deaths from cancer are explained by metastasis, and yet large-scale metastasis research has been impractical owing to the complexity of in vivo models. Here we introduce an in vivo barcoding strategy that is capable of determining the metastatic potential of human cancer cell lines in mouse xenografts at scale. We validated the robustness, scalability and reproducibility of the method and applied it to 500 cell lines1,2 spanning 21 types of solid tumour. We created a first-generation metastasis map (MetMap) that reveals organ-specific patterns of metastasis, enabling these patterns to be associated with clinical and genomic features. We demonstrate the utility of MetMap by investigating the molecular basis of breast cancers capable of metastasizing to the brain-a principal cause of death in patients with this type of cancer. Breast cancers capable of metastasizing to the brain showed evidence of altered lipid metabolism. Perturbation of lipid metabolism in these cells curbed brain metastasis development, suggesting a therapeutic strategy to combat the disease and demonstrating the utility of MetMap as a resource to support metastasis research.


Assuntos
Neoplasias da Mama/patologia , Movimento Celular , Metástase Neoplásica/patologia , Especificidade de Órgãos , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/secundário , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Processamento Eletrônico de Dados , Feminino , Xenoenxertos , Humanos , Metabolismo dos Lipídeos/genética , Camundongos , Tipagem Molecular , Mutação , Metástase Neoplásica/genética , Transplante de Neoplasias , Projetos Piloto
10.
PLoS One ; 14(9): e0222165, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31560691

RESUMO

Open data science and algorithm development competitions offer a unique avenue for rapid discovery of better computational strategies. We highlight three examples in computational biology and bioinformatics research in which the use of competitions has yielded significant performance gains over established algorithms. These include algorithms for antibody clustering, imputing gene expression data, and querying the Connectivity Map (CMap). Performance gains are evaluated quantitatively using realistic, albeit sanitized, data sets. The solutions produced through these competitions are then examined with respect to their utility and the prospects for implementation in the field. We present the decision process and competition design considerations that lead to these successful outcomes as a model for researchers who want to use competitions and non-domain crowds as collaborators to further their research.


Assuntos
Biologia Computacional/tendências , Algoritmos , Anticorpos/classificação , Anticorpos/genética , Análise por Conglomerados , Crowdsourcing/tendências , Perfilação da Expressão Gênica/estatística & dados numéricos , Humanos , Invenções/tendências
11.
Nat Methods ; 16(9): 843-852, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31471613

RESUMO

Many bioinformatics methods have been proposed for reducing the complexity of large gene or protein networks into relevant subnetworks or modules. Yet, how such methods compare to each other in terms of their ability to identify disease-relevant modules in different types of network remains poorly understood. We launched the 'Disease Module Identification DREAM Challenge', an open competition to comprehensively assess module identification methods across diverse protein-protein interaction, signaling, gene co-expression, homology and cancer-gene networks. Predicted network modules were tested for association with complex traits and diseases using a unique collection of 180 genome-wide association studies. Our robust assessment of 75 module identification methods reveals top-performing algorithms, which recover complementary trait-associated modules. We find that most of these modules correspond to core disease-relevant pathways, which often comprise therapeutic targets. This community challenge establishes biologically interpretable benchmarks, tools and guidelines for molecular network analysis to study human disease biology.


Assuntos
Biologia Computacional/métodos , Doença/genética , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Modelos Biológicos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Algoritmos , Perfilação da Expressão Gênica , Humanos , Fenótipo , Mapas de Interação de Proteínas
12.
Environ Health Perspect ; 127(4): 47002, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30964323

RESUMO

BACKGROUND: Most chemicals in commerce have not been evaluated for their carcinogenic potential. The de facto gold-standard approach to carcinogen testing adopts the 2-y rodent bioassay, a time-consuming and costly procedure. High-throughput in vitro assays are a promising alternative for addressing the limitations in carcinogen screening. OBJECTIVES: We developed a screening process for predicting chemical carcinogenicity and genotoxicity and characterizing modes of actions (MoAs) using in vitro gene expression assays. METHODS: We generated a large toxicogenomics resource comprising [Formula: see text] expression profiles corresponding to 330 chemicals profiled in HepG2 (human hepatocellular carcinoma cell line) at multiple doses and replicates. Predictive models of carcinogenicity and genotoxicity were built using a random forest classifier. Differential pathway enrichment analysis was performed to identify pathways associated with carcinogen exposure. Signatures of carcinogenicity and genotoxicity were compared with external sources, including Drugmatrix and the Connectivity Map. RESULTS: Among profiles with sufficient bioactivity, our classifiers achieved 72.2% Area Under the ROC Curve (AUC) for predicting carcinogenicity and 82.3% AUC for predicting genotoxicity. Chemical bioactivity, as measured by the strength and reproducibility of the transcriptional response, was not significantly associated with long-term carcinogenicity in doses up to [Formula: see text]. However, sufficient bioactivity was necessary for a chemical to be used for prediction of carcinogenicity. Pathway enrichment analysis revealed pathways consistent with known pathways that drive cancer, including DNA damage and repair. The data is available at https://clue.io/CRCGN_ABC , and a portal for query and visualization of the results is accessible at https://carcinogenome.org . DISCUSSION: We demonstrated an in vitro screening approach using gene expression profiling to predict carcinogenicity and infer MoAs of chemical perturbations. https://doi.org/10.1289/EHP3986.


Assuntos
Testes de Carcinogenicidade/métodos , Carcinógenos/toxicidade , Perfilação da Expressão Gênica/métodos , Toxicogenética/métodos , Área Sob a Curva , Testes de Carcinogenicidade/instrumentação , Dano ao DNA , Perfilação da Expressão Gênica/instrumentação , Células Hep G2 , Humanos , Técnicas In Vitro/instrumentação , Técnicas In Vitro/métodos , Curva ROC
13.
Bioinformatics ; 35(8): 1427-1429, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30203022

RESUMO

MOTIVATION: Facilitated by technological improvements, pharmacologic and genetic perturbational datasets have grown in recent years to include millions of experiments. Sharing and publicly distributing these diverse data creates many opportunities for discovery, but in recent years the unprecedented size of data generated and its complex associated metadata have also created data storage and integration challenges. RESULTS: We present the GCTx file format and a suite of open-source packages for the efficient storage, serialization and analysis of dense two-dimensional matrices. We have extensively used the format in the Connectivity Map to assemble and share massive datasets currently comprising 1.3 million experiments, and we anticipate that the format's generalizability, paired with code libraries that we provide, will lower barriers for integrated cross-assay analysis and algorithm development. AVAILABILITY AND IMPLEMENTATION: Software packages (available in Python, R, Matlab and Java) are freely available at https://github.com/cmap. Additional instructions, tutorials and datasets are available at clue.io/code. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Metadados , Software , Algoritmos , Armazenamento e Recuperação da Informação
14.
Nat Methods ; 15(7): 543-546, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29915188

RESUMO

Functional genomics networks are widely used to identify unexpected pathway relationships in large genomic datasets. However, it is challenging to compare the signal-to-noise ratios of different networks and to identify the optimal network with which to interpret a particular genetic dataset. We present GeNets, a platform in which users can train a machine-learning model (Quack) to carry out these comparisons and execute, store, and share analyses of genetic and RNA-sequencing datasets.


Assuntos
Genômica/métodos , Internet , Aprendizado de Máquina , DNA/genética , Bases de Dados de Ácidos Nucleicos , Técnicas de Amplificação de Ácido Nucleico , RNA/genética , Software
15.
Cell Syst ; 6(4): 424-443.e7, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29655704

RESUMO

Although the value of proteomics has been demonstrated, cost and scale are typically prohibitive, and gene expression profiling remains dominant for characterizing cellular responses to perturbations. However, high-throughput sentinel assays provide an opportunity for proteomics to contribute at a meaningful scale. We present a systematic library resource (90 drugs × 6 cell lines) of proteomic signatures that measure changes in the reduced-representation phosphoproteome (P100) and changes in epigenetic marks on histones (GCP). A majority of these drugs elicited reproducible signatures, but notable cell line- and assay-specific differences were observed. Using the "connectivity" framework, we compared signatures across cell types and integrated data across assays, including a transcriptional assay (L1000). Consistent connectivity among cell types revealed cellular responses that transcended lineage, and consistent connectivity among assays revealed unexpected associations between drugs. We further leveraged the resource against public data to formulate hypotheses for treatment of multiple myeloma and acute lymphocytic leukemia. This resource is publicly available at https://clue.io/proteomics.


Assuntos
Bases de Dados Factuais , Fosfoproteínas/efeitos dos fármacos , Algoritmos , Linhagem Celular , Cromatografia Líquida , Conjuntos de Dados como Assunto , Regulação da Expressão Gênica , Código das Histonas , Humanos , Espectrometria de Massas , Fenômenos Farmacológicos e Toxicológicos , Fosfoproteínas/metabolismo , Proteômica , Transdução de Sinais , Software
16.
PLoS Biol ; 15(11): e2003213, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29190685

RESUMO

The application of RNA interference (RNAi) to mammalian cells has provided the means to perform phenotypic screens to determine the functions of genes. Although RNAi has revolutionized loss-of-function genetic experiments, it has been difficult to systematically assess the prevalence and consequences of off-target effects. The Connectivity Map (CMAP) represents an unprecedented resource to study the gene expression consequences of expressing short hairpin RNAs (shRNAs). Analysis of signatures for over 13,000 shRNAs applied in 9 cell lines revealed that microRNA (miRNA)-like off-target effects of RNAi are far stronger and more pervasive than generally appreciated. We show that mitigating off-target effects is feasible in these datasets via computational methodologies to produce a consensus gene signature (CGS). In addition, we compared RNAi technology to clustered regularly interspaced short palindromic repeat (CRISPR)-based knockout by analysis of 373 single guide RNAs (sgRNAs) in 6 cells lines and show that the on-target efficacies are comparable, but CRISPR technology is far less susceptible to systematic off-target effects. These results will help guide the proper use and analysis of loss-of-function reagents for the determination of gene function.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Perfilação da Expressão Gênica , Redes Reguladoras de Genes/genética , Genômica/métodos , Interferência de RNA/fisiologia , Células Cultivadas , Regulação Neoplásica da Expressão Gênica , Genômica/normas , Células HT29 , Células Hep G2 , Humanos , Células MCF-7 , RNA Interferente Pequeno/genética , Transcriptoma
18.
Cell ; 171(6): 1437-1452.e17, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-29195078

RESUMO

We previously piloted the concept of a Connectivity Map (CMap), whereby genes, drugs, and disease states are connected by virtue of common gene-expression signatures. Here, we report more than a 1,000-fold scale-up of the CMap as part of the NIH LINCS Consortium, made possible by a new, low-cost, high-throughput reduced representation expression profiling method that we term L1000. We show that L1000 is highly reproducible, comparable to RNA sequencing, and suitable for computational inference of the expression levels of 81% of non-measured transcripts. We further show that the expanded CMap can be used to discover mechanism of action of small molecules, functionally annotate genetic variants of disease genes, and inform clinical trials. The 1.3 million L1000 profiles described here, as well as tools for their analysis, are available at https://clue.io.


Assuntos
Perfilação da Expressão Gênica/métodos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Perfilação da Expressão Gênica/economia , Humanos , Neoplasias/tratamento farmacológico , Especificidade de Órgãos , Preparações Farmacêuticas/metabolismo , Análise de Sequência de RNA/economia , Análise de Sequência de RNA/métodos , Bibliotecas de Moléculas Pequenas
19.
Cancer Cell ; 30(2): 214-228, 2016 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-27478040

RESUMO

Recent genome sequencing efforts have identified millions of somatic mutations in cancer. However, the functional impact of most variants is poorly understood. Here we characterize 194 somatic mutations identified in primary lung adenocarcinomas. We present an expression-based variant-impact phenotyping (eVIP) method that uses gene expression changes to distinguish impactful from neutral somatic mutations. eVIP identified 69% of mutations analyzed as impactful and 31% as functionally neutral. A subset of the impactful mutations induces xenograft tumor formation in mice and/or confers resistance to cellular EGFR inhibition. Among these impactful variants are rare somatic, clinically actionable variants including EGFR S645C, ARAF S214C and S214F, ERBB2 S418T, and multiple BRAF variants, demonstrating that rare mutations can be functionally important in cancer.


Assuntos
Adenocarcinoma/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias Pulmonares/genética , Mutação , Adenocarcinoma de Pulmão , Animais , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Xenoenxertos , Humanos , Camundongos , Oncogenes , Fenótipo
20.
Cancer Discov ; 6(7): 714-26, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27147599

RESUMO

UNLABELLED: Cancer genome characterization efforts now provide an initial view of the somatic alterations in primary tumors. However, most point mutations occur at low frequency, and the function of these alleles remains undefined. We have developed a scalable systematic approach to interrogate the function of cancer-associated gene variants. We subjected 474 mutant alleles curated from 5,338 tumors to pooled in vivo tumor formation assays and gene expression profiling. We identified 12 transforming alleles, including two in genes (PIK3CB, POT1) that have not been shown to be tumorigenic. One rare KRAS allele, D33E, displayed tumorigenicity and constitutive activation of known RAS effector pathways. By comparing gene expression changes induced upon expression of wild-type and mutant alleles, we inferred the activity of specific alleles. Because alleles found to be mutated only once in 5,338 tumors rendered cells tumorigenic, these observations underscore the value of integrating genomic information with functional studies. SIGNIFICANCE: Experimentally inferring the functional status of cancer-associated mutations facilitates the interpretation of genomic information in cancer. Pooled in vivo screen and gene expression profiling identified functional variants and demonstrated that expression of rare variants induced tumorigenesis. Variant phenotyping through functional studies will facilitate defining key somatic events in cancer. Cancer Discov; 6(7); 714-26. ©2016 AACR.See related commentary by Cho and Collisson, p. 694This article is highlighted in the In This Issue feature, p. 681.


Assuntos
Alelos , Transformação Celular Neoplásica/genética , Variação Genética , Neoplasias/genética , Oncogenes , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Perfilação da Expressão Gênica/métodos , Estudos de Associação Genética , Predisposição Genética para Doença , Xenoenxertos , Ensaios de Triagem em Larga Escala , Humanos , Masculino , Camundongos , Neoplasias/diagnóstico , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...