Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Sci ; 13(6)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37371341

RESUMO

Glucocorticoid receptor α (GRα), a ligand-regulated transcription factor, mainly activated by cortisol in humans and fish, mediates neural allostatic and homeostatic functions induced by different types of acute and chronic stress, and systemic inflammation. Zebrafish GRα is suggested to have multiple transcriptional effects essential for normal development and survival, similarly to mammals. While sequence alignments of human, monkey, rat, and mouse GRs have shown many GRα isoforms, we questioned the protein expression profile of GRα in the adult zebrafish (Danio rerio) brain using an alternative model for stress-related neuropsychiatric research, by means of Western blot, immunohistochemistry and double immunofluorescence. Our results identified four main GRα-like immunoreactive bands (95 kDa, 60 kDa, 45 kDa and 35 kDa), with the 95 kDa protein showing highest expression in forebrain compared to midbrain and hindbrain. GRα showed a wide distribution throughout the antero-posterior zebrafish brain axis, with the most prominent labeling within the telencephalon, preoptic, hypothalamus, midbrain, brain stem, central grey, locus coeruleus and cerebellum. Double immunofluorescence revealed that GRα is coexpressed in TH+, ß2-AR+ and vGLUT+ neurons, suggesting the potential of GRα influences on adrenergic and glutamatergic transmission. Moreover, GRα was co-localized in midline astroglial cells (GFAP+) within the telencephalon, hypothalamus and hindbrain. Interestingly, GRα expression was evident in the brain regions involved in adaptive stress responses, social behavior, and sensory and motor integration, supporting the evolutionarily conserved features of glucocorticoid receptors in the zebrafish brain.

2.
Pharmaceutics ; 14(2)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35214102

RESUMO

The aim of this study was the development of optimal sustained-release moxifloxacin (MOX)-loaded liposomes as intraocular therapeutics of endophthalmitis. Two methods were compared for the preparation of MOX liposomes; the dehydration-rehydration (DRV) method and the active loading method (AL). Numerous lipid-membrane compositions were studied to determine the potential effect on MOX loading and retention in liposomes. MOX and phospholipid contents were measured by HPLC and a colorimetric assay for phospholipids, respectively. Vesicle size distribution and surface charge were measured by DLS, and morphology was evaluated by cryo-TEM. The AL method conferred liposomes with higher MOX encapsulation compared to the DRV method for all the lipid compositions used. Cryo-TEM showed that both liposome types had round vesicular structure and size around 100-150 nm, while a granular texture was evident in the entrapped aqueous compartments of most AL liposomes, but substantially less in DRV liposomes; X-ray diffraction analysis demonstrated slight crystallinity in AL liposomes, especially the ones with highest MOX encapsulation. AL liposomes retained MOX for significantly longer time periods compared to DRVs. Lipid composition did not affect MOX release from DRV liposomes but significantly altered drug loading/release in AL liposomes. Interestingly, AL liposomes demonstrated substantially higher antimicrobial potential towards S. epidermidis growth and biofilm susceptibility compared to corresponding DRV liposomes, indicating the importance of MOX retention in liposomes on their activity. In conclusion, the liposome preparation method/type determines the rate of MOX release from liposomes and modulates their antimicrobial potential, a finding that deserves further in vitro and in vivo exploitation.

3.
Neuropharmacology ; 129: 1-15, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29113897

RESUMO

Cannabinoid administration modulates dopamine transmission via an indirect, multisynaptic mechanism that includes the activation of cannabinoid type-1 receptor (CB1R). The present study evaluated in rodents, the effects of acute and chronic (20 days) WIN55,212-2 administration, a non-selective CB1R agonist, on dopamine uptake and synthesis in the mesolimbic and nigrostriatal dopaminergic pathways and associate them to its effects on the endocannabinoid system. The effect of spontaneous withdrawal, after different abstinence periods (7 days, 20 days), was also assessed. Acute and chronic administration of WIN55,212-2 decreased dopamine transporter (DAT) binding and mRNA levels, as well as tyrosine hydroxylase (TH) mRNA expression in the substantia nigra (SN) and ventral tegmental area (VTA). In the striatum, chronic WIN55,212-2 administration led to decreased protein expression of DAT and TH, whereas no alterations were observed after acute administration, suggesting a diminished dopamine uptake and synthesis after chronic agonist treatment. Furthermore, after chronic agonist treatment, we observed reduced CB1R binding and mRNA levels in SN and striatum, providing evidence for a possible regulatory role of the endocannabinoid system on dopaminergic function. Seven days after WIN55,212-2 cessation, we observed a rebound increase in mRNA, binding and total protein levels of DAT and TH in VTA, SN and striatum proposing the existence of a biphasic expression pattern, which was also observed in CB1R binding levels. Within the 20-day period of abstinence, TH mRNA and protein levels and CB1R binding levels remain increased. The above results indicate that chronic CB1R agonist treatment induces long-lasting control of the mesostriatal dopaminergic activity.


Assuntos
Analgésicos/farmacologia , Benzoxazinas/farmacologia , Encéfalo/efeitos dos fármacos , Canabinoides/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Morfolinas/farmacologia , Naftalenos/farmacologia , Animais , Autorradiografia , Sítios de Ligação/efeitos dos fármacos , Encéfalo/metabolismo , Masculino , Piperidinas/farmacologia , Pirazóis/farmacologia , RNA Mensageiro , Ratos , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/genética , Fatores de Tempo , Trítio/farmacocinética , Tirosina 3-Mono-Oxigenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...