Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Int ; 111(1): 63-79, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38421391

RESUMO

Poor sleep increases pain, at least in part, by disrupting endogenous pain modulation. However, the efficacy of endogenous analgesia in sleep-deprived subjects has never been tested. To assess this issue, we chose three different ways of triggering endogenous analgesia: (1) acupuncture, (2) acute stress, and (3) noxious stimulation, and compared their ability to decrease the pronociceptive effect induced by REM-SD (Rapid Eye Movement Sleep Deprivation) with that to decrease inflammatory hyperalgesia in the classical carrageenan model. First, we tested the ability of REM-SD to worsen carrageenan-induced hyperalgesia: A low dose of carrageenan (30 µg) in sleep-deprived Wistar rats resulted in a potentiated hyperalgesic effect that was more intense and longer-lasting than that induced by a higher standard dose of carrageenan (100 µg) or by REM-SD alone. Then, we found that (1) acupuncture, performed at ST36, completely reversed the pronociceptive effect induced by REM-SD or by carrageenan; (2) immobilization stress completely reversed the pronociceptive effect of REM-SD, while transiently inhibited carrageenan-induced hyperalgesia; (3) noxious stimulation of the forepaw by capsaicin also reversed the pronociceptive effect of REM-SD and persistently increased the nociceptive threshold above the baseline in carrageenan-treated animals. Therefore, acupuncture, stress, or noxious stimulation reversed the pronociceptive effect of REM-SD, while each intervention affected carrageenan-induced hyperalgesia differently. This study has shown that while sleep loss may disrupt endogenous pain modulation mechanisms, it does not prevent the activation of these mechanisms to induce analgesia in sleep-deprived individuals.


Assuntos
Terapia por Acupuntura , Analgesia , Humanos , Ratos , Animais , Hiperalgesia/induzido quimicamente , Hiperalgesia/terapia , Sono REM/fisiologia , Carragenina , Ratos Wistar , Dor
2.
Neuropharmacology ; 139: 52-60, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29928886

RESUMO

Painful conditions and sleep disturbances are major public health problems worldwide and one directly affects the other. Sleep loss increases pain prevalence and severity; while pain disturbs sleep. However, the underlying mechanisms are largely unknown. Here we asked whether chronic sleep restriction for 6 h daily progressively increases pain sensitivity and if this increase is reversed after two days of free sleep. Also, whether the pronociceptive effect of chronic sleep restriction depends on the periaqueductal grey and on the nucleus accumbens, two key regions involved in the modulation of pain and sleep-wake cycle. We showed that sleep restriction induces a pronociceptive effect characterized by a significant decrease in the mechanical paw withdrawal threshold in rats. Such effect increases progressively from day 3 to day 12 remaining stable thereafter until day 26. Two consecutive days of free sleep were not enough to reverse the effect, not even to attenuate it. This pronociceptive effect depends on the periaqueductal grey and on the nucleus accumbens, since it was prevented by their excitotoxic lesion. Complementarily, chronic sleep restriction significantly increased c-Fos protein expression within the periaqueductal grey and the nucleus accumbens and this correlates with the intensity of the pronociceptive effect, suggesting that the greater the neural activity in this regions, the greater the effect. These findings may contribute not only to understand why painful conditions are more prevalent and severe among people who sleep poorly, but also to develop therapeutic strategies to prevent this, increasing the effectiveness of pain management in this population.


Assuntos
Núcleo Accumbens/fisiopatologia , Percepção da Dor/fisiologia , Limiar da Dor/fisiologia , Substância Cinzenta Periaquedutal/fisiopatologia , Privação do Sono/fisiopatologia , Animais , Masculino , N-Metilaspartato/toxicidade , Dor Nociceptiva/patologia , Dor Nociceptiva/fisiopatologia , Núcleo Accumbens/patologia , Substância Cinzenta Periaquedutal/patologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Wistar , Privação do Sono/patologia , Fatores de Tempo , Tato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...