Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Environ ; 43(4): 965-980, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31760666

RESUMO

Functional relationships between wood density and measures of xylem hydraulic safety and efficiency are ambiguous, especially in wet tropical forests. In this meta-analysis, we move beyond wood density per se and identify relationships between xylem allocated to fibers, parenchyma, and vessels and measures of hydraulic safety and efficiency. We analyzed published data of xylem traits, hydraulic properties and measures of drought resistance from neotropical tree species retrieved from 346 sources. We found that xylem volume allocation to fiber walls increases embolism resistance, but at the expense of specific conductivity and sapwood capacitance. Xylem volume investment in fiber lumen increases capacitance, while investment in axial parenchyma is associated with higher specific conductivity. Dominant tree taxa from wet forests prioritize xylem allocation to axial parenchyma at the expense of fiber walls, resulting in a low embolism resistance for a given wood density and a high vulnerability to drought-induced mortality. We conclude that strong trade-offs between xylem allocation to fiber walls, fiber lumen, and axial parenchyma drive drought resistance in neotropical trees. Moreover, the benefits of xylem allocation to axial parenchyma in wet tropical trees might not outweigh the consequential low embolism resistance under more frequent and severe droughts in a changing climate.


Assuntos
Árvores/fisiologia , Madeira/fisiologia , Parede Celular/fisiologia , Mudança Climática , Desidratação , Árvores/anatomia & histologia , Água/metabolismo , Madeira/anatomia & histologia , Xilema/anatomia & histologia , Xilema/fisiologia
2.
Nature ; 567(7748): E13, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30837740

RESUMO

In this Letter, in "About 75% of this reduction is expected to come from emission reductions and the remaining 25% from land use, land-use change and forestry", '25%' should read '1%' and '75%' should read '99%'. In the sentence "The carbon-sink-maximizing portfolio has a small negative effect on annual precipitation (-2 mm) and no effect on air temperature (Table 1)" the word 'precipitation' was omitted. Denmark was accidentally deleted during the conversion of Fig. 1. The original Letter has been corrected online.

3.
Nature ; 562(7726): 259-262, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305744

RESUMO

The Paris Agreement promotes forest management as a pathway towards halting climate warming through the reduction of carbon dioxide (CO2) emissions1. However, the climate benefits from carbon sequestration through forest management may be reinforced, counteracted or even offset by concurrent management-induced changes in surface albedo, land-surface roughness, emissions of biogenic volatile organic compounds, transpiration and sensible heat flux2-4. Consequently, forest management could offset CO2 emissions without halting global temperature rise. It therefore remains to be confirmed whether commonly proposed sustainable European forest-management portfolios would comply with the Paris Agreement-that is, whether they can reduce the growth rate of atmospheric CO2, reduce the radiative imbalance at the top of the atmosphere, and neither increase the near-surface air temperature nor decrease precipitation by the end of the twenty-first century. Here we show that the portfolio made up of management systems that locally maximize the carbon sink through carbon sequestration, wood use and product and energy substitution reduces the growth rate of atmospheric CO2, but does not meet any of the other criteria. The portfolios that maximize the carbon sink or forest albedo pass only one-different in each case-criterion. Managing the European forests with the objective of reducing near-surface air temperature, on the other hand, will also reduce the atmospheric CO2 growth rate, thus meeting two of the four criteria. Trade-off are thus unavoidable when using European forests to meet climate objectives. Furthermore, our results demonstrate that if present-day forest cover is sustained, the additional climate benefits achieved through forest management would be modest and local, rather than global. On the basis of these findings, we argue that Europe should not rely on forest management to mitigate climate change. The modest climate effects from changes in forest management imply, however, that if adaptation to future climate were to require large-scale changes in species composition and silvicultural systems over Europe5,6, the forests could be adapted to climate change with neither positive nor negative  climate effects.


Assuntos
Sequestro de Carbono , Agricultura Florestal , Florestas , Aquecimento Global/legislação & jurisprudência , Aquecimento Global/prevenção & controle , Objetivos , Desenvolvimento Sustentável/legislação & jurisprudência , Ar , Atmosfera/química , Dióxido de Carbono/análise , Europa (Continente) , Mapeamento Geográfico , Cooperação Internacional , Temperatura
4.
Glob Chang Biol ; 24(4): 1470-1487, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29235213

RESUMO

As the applications of Earth system models (ESMs) move from general climate projections toward questions of mitigation and adaptation, the inclusion of land management practices in these models becomes crucial. We carried out a survey among modeling groups to show an evolution from models able only to deal with land-cover change to more sophisticated approaches that allow also for the partial integration of land management changes. For the longer term a comprehensive land management representation can be anticipated for all major models. To guide the prioritization of implementation, we evaluate ten land management practices-forestry harvest, tree species selection, grazing and mowing harvest, crop harvest, crop species selection, irrigation, wetland drainage, fertilization, tillage, and fire-for (1) their importance on the Earth system, (2) the possibility of implementing them in state-of-the-art ESMs, and (3) availability of required input data. Matching these criteria, we identify "low-hanging fruits" for the inclusion in ESMs, such as basic implementations of crop and forestry harvest and fertilization. We also identify research requirements for specific communities to address the remaining land management practices. Data availability severely hampers modeling the most extensive land management practice, grazing and mowing harvest, and is a limiting factor for a comprehensive implementation of most other practices. Inadequate process understanding hampers even a basic assessment of crop species selection and tillage effects. The need for multiple advanced model structures will be the challenge for a comprehensive implementation of most practices but considerable synergy can be gained using the same structures for different practices. A continuous and closer collaboration of the modeling, Earth observation, and land system science communities is thus required to achieve the inclusion of land management in ESMs.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais/métodos , Planeta Terra , Ecossistema , Modelos Teóricos
5.
Science ; 351(6273): 597-600, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26912701

RESUMO

Afforestation and forest management are considered to be key instruments in mitigating climate change. Here we show that since 1750, in spite of considerable afforestation, wood extraction has led to Europe's forests accumulating a carbon debt of 3.1 petagrams of carbon. We found that afforestation is responsible for an increase of 0.12 watts per square meter in the radiative imbalance at the top of the atmosphere, whereas an increase of 0.12 kelvin in summertime atmospheric boundary layer temperature was mainly caused by species conversion. Thus, two and a half centuries of forest management in Europe have not cooled the climate. The political imperative to mitigate climate change through afforestation and forest management therefore risks failure, unless it is recognized that not all forestry contributes to climate change mitigation.


Assuntos
Agricultura Florestal , Florestas , Aquecimento Global , Efeito Estufa , Atmosfera/química , Carbono/análise , Ciclo do Carbono , Europa (Continente)
6.
Environ Pollut ; 159(12): 3294-301, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21937157

RESUMO

Will species that are sensitive/tolerant to Zn pollution still have the same sensitivity/tolerance in a future climate? To answer this question we analysed the response of constructed grassland communities to five levels of zinc (Zn) supply, ranging from 0 to 354 mg Zn kg(-1) dry soil, under a current climate and a future climate (elevated CO2 and warming). Zn concentrations increased in roots and shoots with Zn addition but this increase did not differ between climates. Light-saturated net CO2 assimilation rate (A(sat)) of the species, on the other hand, responded differently to Zn addition depending on climate. Still, current and future climate communities have comparable biomass responses to Zn, i.e., no change in root biomass and a 13% decrease of above-ground biomass. Provided that the different response of A(sat) in a future climate will not compromise productivity and survival on the long term, sensitivity is not altered by climate change.


Assuntos
Poaceae/efeitos dos fármacos , Poaceae/fisiologia , Poluentes do Solo/toxicidade , Zinco/toxicidade , Biomassa , Mudança Climática , Poluentes do Solo/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Zinco/metabolismo
7.
Physiol Plant ; 131(2): 251-62, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18251896

RESUMO

In view of the projected climatic changes and the global decrease in plant species diversity, it is critical to understand the effects of elevated air temperature (T(air)) and species richness (S) on physiological processes in plant communities. Therefore, an experiment of artificially assembled grassland ecosystems, with different S (one, three or nine species), growing in sunlit climate-controlled chambers at ambient T(air) and ambient T(air) + 3 degrees C was established. We investigated whether grassland species would be more affected by midday high-temperature stress during summer in a warmer climate scenario. The effect of elevated T(air) was expected to differ with S. This was tested in the second and third experimental years by means of chlorophyll a fluorescence. Because acclimation to elevated T(air) would affect the plant's stress response, the hypothesis of photosynthetic acclimation to elevated T(air) was tested in the third year by gas exchange measurements in the monocultures. Plants in the elevated T(air) chambers suffered more from midday stress on warm summer days than those in ambient chambers. In absence of severe drought, the quantum yield of PSII was not affected by elevated T(air). Our results further indicate that species had not photosynthetically acclimated to a temperature increase of 3 degrees C after 3 years exposure to a warmer climate. Although effects of S and T(air) x S interactions were mostly not significant in our study, we expect that combined effects of T(air) and S would be important in conditions of severe drought events.


Assuntos
Clima , Efeito Estufa , Fotoquímica , Poaceae/metabolismo , Aclimatação , Clorofila/metabolismo , Ecossistema , Ambiente Controlado , Fotossíntese/efeitos da radiação , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Poaceae/crescimento & desenvolvimento , Poaceae/efeitos da radiação , Luz Solar , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA