Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 15(7)2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37515169

RESUMO

HSV-1 disease is a significant public health burden causing orofacial, genital, cornea, and brain infection. We previously reported that a trivalent HSV-2 gC2, gD2, gE2 nucleoside-modified mRNA-lipid nanoparticle (LNP) vaccine provides excellent protection against vaginal HSV-1 infection in mice. Here, we evaluated whether this HSV-2 gC2, gD2, gE2 vaccine is as effective as a similar HSV-1 mRNA LNP vaccine containing gC1, gD1, and gE1 in the murine lip and genital infection models. Mice were immunized twice with a total mRNA dose of 1 or 10 µg. The two vaccines produced comparable HSV-1 neutralizing antibody titers, and surprisingly, the HSV-2 vaccine stimulated more potent CD8+ T-cell responses to gE1 peptides than the HSV-1 vaccine. Both vaccines provided complete protection from clinical disease in the lip model, while in the genital model, both vaccines prevented death and genital disease, but the HSV-1 vaccine reduced day two vaginal titers slightly better at the 1 µg dose. Both vaccines prevented HSV-1 DNA from reaching the trigeminal or dorsal root ganglia to a similar extent. We conclude that the trivalent HSV-2 mRNA vaccine provides outstanding protection against HSV-1 challenge at two sites and may serve as a universal prophylactic vaccine for HSV-1 and HSV-2.


Assuntos
Herpes Genital , Herpesvirus Humano 1 , Feminino , Animais , Camundongos , Herpesvirus Humano 2/genética , Herpesvirus Humano 1/genética , Herpes Genital/prevenção & controle , Nucleosídeos , Anticorpos Neutralizantes , Proteínas do Envelope Viral , Anticorpos Antivirais , RNA Mensageiro/genética
2.
Viruses ; 15(5)2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37243234

RESUMO

Herpes simplex virus type 2 (HSV-2) is a leading cause of genital ulcer disease and a major risk factor for acquisition and transmission of HIV. Frequent recurrent genital lesions and concerns about transmitting infection to intimate partners affect the quality of life of infected individuals. Therapeutic vaccines are urgently needed to reduce the frequency of genital lesions and transmission. S-540956 is a novel vaccine adjuvant that contains CpG oligonucleotide ODN2006 annealed to its complementary sequence and conjugated to a lipid that targets the adjuvant to lymph nodes. Our primary goal was to compare S-540956 administered with HSV-2 glycoprotein D (gD2) with no treatment in a guinea pig model of recurrent genital herpes (studies 1 and 2). Our secondary goals were to compare S-540956 with oligonucleotide ODN2006 (study1) or glucopyranosyl lipid A in a stable oil-in-water nano-emulsion (GLA-SE) (study 2). gD2/S-540956 reduced the number of days with recurrent genital lesions by 56%, vaginal shedding of HSV-2 DNA by 49%, and both combined by 54% compared to PBS, and was more efficacious than the two other adjuvants. Our results indicate that S-540956 has great potential as an adjuvant for a therapeutic vaccine for genital herpes, and merits further evaluation with the addition of potent T cell immunogens.


Assuntos
Herpes Genital , Vacinas , Feminino , Cobaias , Animais , Herpes Genital/prevenção & controle , Herpesvirus Humano 2/genética , Anticorpos Neutralizantes , Anticorpos Antivirais , Qualidade de Vida , Proteínas do Envelope Viral , Adjuvantes Imunológicos , Genitália , Linfonodos , DNA
3.
J Clin Invest ; 131(23)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34618692

RESUMO

Nucleoside-modified mRNA vaccines have gained global attention because of COVID-19. We evaluated a similar vaccine approach for preventing a chronic, latent genital infection rather than an acute respiratory infection. We used animal models to compare an HSV-2 trivalent nucleoside-modified mRNA vaccine with the same antigens prepared as proteins, with an emphasis on antigen-specific memory B cell responses and immune correlates of protection. In guinea pigs, serum neutralizing-antibody titers were higher at 1 month and declined far less by 8 months in mRNA- compared with protein-immunized animals. Both vaccines protected against death and genital lesions when infected 1 month after immunization; however, protection was more durable in the mRNA group compared with the protein group when infected after 8 months, an interval representing greater than 15% of the animal's lifespan. Serum and vaginal neutralizing-antibody titers correlated with protection against infection, as measured by genital lesions and vaginal virus titers 2 days after infection. In mice, the mRNA vaccine generated more antigen-specific memory B cells than the protein vaccine at early times after immunization that persisted for up to 1 year. High neutralizing titers and robust B cell immune memory likely explain the more durable protection by the HSV-2 mRNA vaccine.


Assuntos
Herpes Genital , Herpesvirus Humano 2/imunologia , Memória Imunológica , Células B de Memória/imunologia , RNA Viral/imunologia , Vacinas Sintéticas/imunologia , Vacinas Virais/imunologia , Animais , COVID-19/imunologia , COVID-19/prevenção & controle , Modelos Animais de Doenças , Feminino , Cobaias , Herpes Genital/imunologia , Herpes Genital/prevenção & controle , SARS-CoV-2/imunologia , Vacinas de mRNA
4.
PLoS Pathog ; 16(7): e1008795, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32716975

RESUMO

HSV-1 causes 50% of first-time genital herpes infections in resource-rich countries and affects 190 million people worldwide. A prophylactic herpes vaccine is needed to protect against genital infections by both HSV-1 and HSV-2. Previously our laboratory developed a trivalent vaccine that targets glycoproteins C, D, and E present on the HSV-2 virion. We reported that this vaccine protects animals from genital disease and recurrent virus shedding following lethal HSV-2 challenge. Importantly the vaccine also generates cross-reactive antibodies that neutralize HSV-1, suggesting it may provide protection against HSV-1 infection. Here we compared the efficacy of this vaccine delivered as protein or nucleoside-modified mRNA immunogens against vaginal HSV-1 infection in mice. Both the protein and mRNA vaccines protected mice from HSV-1 disease; however, the mRNA vaccine provided better protection as measured by lower vaginal virus titers post-infection. In a second experiment, we compared protection provided by the mRNA vaccine against intravaginal challenge with HSV-1 or HSV-2. Vaccinated mice were totally protected against death, genital disease and infection of dorsal root ganglia caused by both viruses, but somewhat better protected against vaginal titers after HSV-2 infection. Overall, in the two experiments, the mRNA vaccine prevented death and genital disease in 54/54 (100%) mice infected with HSV-1 and 20/20 (100%) with HSV-2, and prevented HSV DNA from reaching the dorsal root ganglia, the site of virus latency, in 29/30 (97%) mice infected with HSV-1 and 10/10 (100%) with HSV-2. We consider the HSV-2 trivalent mRNA vaccine to be a promising candidate for clinical trials for prevention of both HSV-1 and HSV-2 genital herpes.


Assuntos
Proteção Cruzada/imunologia , Herpes Genital , Herpesvirus Humano 1/imunologia , Herpesvirus Humano 2/imunologia , Vacinas contra Herpesvirus/imunologia , Latência Viral/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Feminino , Herpes Genital/virologia , Camundongos , Camundongos Endogâmicos BALB C , RNA Mensageiro , Proteínas do Envelope Viral/imunologia
5.
Hum Vaccin Immunother ; 16(9): 2109-2113, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32347775

RESUMO

A vaccine to prevent genital herpes is an unmet public health need. We previously reported that a trivalent vaccine containing herpes simplex virus type 2 (HSV-2) glycoproteins C, D, and E (gC2, gD2, gE2) produced in baculovirus and administered with CpG/alum as adjuvants blocks immune evasion mediated by gC2 and gE2 and virus entry by gD2. The vaccine protected guinea pigs against HSV-2 vaginal infection. We evaluated whether the HSV-2 vaccine cross-protects against HSV-1 because many first-time genital herpes infections are now caused by HSV-1. Guinea pigs were mock immunized or immunized with the trivalent vaccine and challenged intravaginally with a different HSV-1 isolate in two experiments. Guinea pigs immunized with the trivalent vaccine developed genital lesions on fewer days than the mock group: 2/477 (0.4%) days compared to 15/424 (3.5%) in experiment one, and 0/135 days compared to 17/135 (12.6%) in experiment two (both P < .001). No animal in the trivalent group had HSV-2 DNA detected in vaginal secretions: 0/180 days for trivalent compared to 4/160 (2.5%) for mock (P < .05) in experiment one, and 0/65 days for trivalent compared to 4/65 (6%) for mock in experiment two. Therefore, a vaccine designed to prevent HSV-2 also protects against HSV-1 genital infection.


Assuntos
Herpes Genital , Herpes Simples , Herpesvirus Humano 1 , Vacinas , Animais , Feminino , Genitália , Cobaias , Herpes Genital/prevenção & controle , Herpesvirus Humano 2 , Proteínas do Envelope Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...