Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 6: 31710, 2016 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-27555451

RESUMO

Present on-chip optical communication technology uses near-infrared light, but visible wavelengths would allow system miniaturization and higher energy confinement. Towards this end, we report a nanoscale wireless communication system that operates at visible wavelengths via in-plane information transmission. Here, plasmonic antenna radiation mediates a three-step conversion process (surface plasmon → photon → surface plasmon) with in-plane efficiency (plasmon → plasmon) of 38% for antenna separation 4λ0 (with λ0 the free-space excitation wavelength). Information transmission is demonstrated at bandwidths in the Hz and MHz ranges. This work opens the possibility of optical conveyance of information using plasmonic antennas for on-chip communication technology.

2.
Front Neurosci ; 10: 252, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27375415

RESUMO

Recent progress in the study of the brain has been greatly facilitated by the development of new tools capable of minimally-invasive, robust coupling to neuronal assemblies. Two prominent examples are the microelectrode array (MEA), which enables electrical signals from large numbers of neurons to be detected and spatiotemporally correlated, and optogenetics, which enables the electrical activity of cells to be controlled with light. In the former case, high spatial density is desirable but, as electrode arrays evolve toward higher density and thus smaller pitch, electrical crosstalk increases. In the latter, finer control over light input is desirable, to enable improved studies of neuroelectronic pathways emanating from specific cell stimulation. Here, we introduce a coaxial electrode architecture that is uniquely suited to address these issues, as it can simultaneously be utilized as an optical waveguide and a shielded electrode in dense arrays. Using optogenetically-transfected cells on a coaxial MEA, we demonstrate the utility of the architecture by recording cellular currents evoked from optical stimulation. We also show the capability for network recording by radiating an area of seven individually-addressed coaxial electrode regions with cultured cells covering a section of the extent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA