Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Funct Mater ; 33(48)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38144446

RESUMO

CRISPR-Cas9 is a programmable gene editing tool with a promising potential for cancer gene therapy. This therapeutic function is enabled in the present work via the non-covalent delivery of CRISPR ribonucleic protein (RNP) by cationic glucosamine/PEI-derived graphene quantum dots (PEI-GQD) that aid in overcoming physiological barriers and tracking genes of interest. PEI-GQD/RNP complex targeting the TP53 mutation overexpressed in ~50% of cancers successfully produces its double-stranded breaks in solution and in PC3 prostate cancer cells. Restoring this cancer "suicide" gene can promote cellular repair pathways and lead to cancer cell apoptosis. Its repair to the healthy form performed by simultaneous PEI-GQD delivery of CRISPR RNP and a gene repair template leads to a successful therapeutic outcome: 40% apoptotic cancer cell death, while having no effect on non-cancerous HeK293 cells. The translocation of PEI-GQD/RNP complex into PC3 cell cytoplasm is tracked via GQD intrinsic fluorescence, while EGFP-tagged RNP is detected in the cell nucleus, showing the successful detachment of the gene editing tool upon internalization. Using GQDs as non-viral delivery and imaging agents for CRISPR-Cas9 RNP sets the stage for image-guided cancer-specific gene therapy.

2.
Antioxidants (Basel) ; 12(8)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37627531

RESUMO

Oxidative stress is proven to be a leading factor in a multitude of adverse conditions, from Alzheimer's disease to cancer. Thus, developing effective radical scavenging agents to eliminate reactive oxygen species (ROS) driving many oxidative processes has become critical. In addition to conventional antioxidants, nanoscale structures and metal-organic complexes have recently shown promising potential for radical scavenging. To design an optimal nanoscale ROS scavenging agent, we have synthesized ten types of biocompatible graphene quantum dots (GQDs) augmented with various metal dopants. The radical scavenging abilities of these novel metal-doped GQD structures were, for the first time, assessed via the DPPH, KMnO4, and RHB (Rhodamine B protectant) assays. While all metal-doped GQDs consistently demonstrate antioxidant properties higher than the undoped cores, aluminum-doped GQDs exhibit 60-95% radical scavenging ability of ascorbic acid positive control. Tm-doped GQDs match the radical scavenging properties of ascorbic acid in the KMnO4 assay. All doped GQD structures possess fluorescence imaging capabilities that enable their tracking in vitro, ensuring their successful cellular internalization. Given such multifunctionality, biocompatible doped GQD antioxidants can become prospective candidates for multimodal therapeutics, including the reduction of ROS with concomitant imaging and therapeutic delivery to cancer tumors.

3.
Nanomaterials (Basel) ; 13(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36903683

RESUMO

Graphene-based materials have been the subject of interest for photothermal therapy due to their high light-to-heat conversion efficiency. Based on recent studies, graphene quantum dots (GQDs) are expected to possess advantageous photothermal properties and facilitate fluorescence image-tracking in the visible and near-infrared (NIR), while surpassing other graphene-based materials in their biocompatibility. Several GQD structures including reduced graphene quantum dots (RGQDs) derived from reduced graphene oxide via top-down oxidation and hyaluronic acid graphene quantum dots (HGQDs) hydrothermally bottom-up synthesized from molecular hyaluronic acid were employed to test these capabilities in the present work. These GQDs possess substantial NIR absorption and fluorescence throughout the visible and NIR beneficial for in vivo imaging while being biocompatible at up to 1.7 mg/mL concentrations. In aqueous suspensions, RGQDs and HGQDs irradiated with a low power (0.9 W/cm2) 808 nm NIR laser facilitate a temperature increase up to 47.0 °C, which is sufficient for cancer tumor ablation. In vitro photothermal experiments sampling multiple conditions directly in the 96-well plate were performed using an automated simultaneous irradiation/measurement system developed on the basis of a 3D printer. In this study, HGQDs and RGQDs facilitated the heating of HeLa cancer cells up to 54.5 °C, leading to the drastic inhibition of cell viability from over 80% down to 22.9%. GQD's fluorescence in the visible and NIR traces their successful internalization into HeLa cells maximized at 20 h suggesting both extracellular and intracellular photothermal treatment capabilities. The combination of the photothermal and imaging modalities tested in vitro makes the GQDs developed in this work prospective agents for cancer theragnostics.

4.
ACS Biomater Sci Eng ; 8(11): 4965-4975, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36179254

RESUMO

Sonography offers many advantages over standard methods of diagnostic imaging due to its non-invasiveness, substantial tissue penetration depth, and low cost. The benefits of ultrasound imaging call for the development of ultrasound-trackable drug delivery vehicles that can address a variety of therapeutic targets. One disadvantage of the technique is the lack of high-precision imaging, which can be circumvented by complementing ultrasound contrast agents with visible and, especially, near-infrared (NIR) fluorophores. In this work, we, for the first time, develop a variety of lightly metal-doped (iron oxide, silver, thulium, neodymium, cerium oxide, cerium chloride, and molybdenum disulfide) nitrogen-containing graphene quantum dots (NGQDs) that demonstrate high-contrast properties in the ultrasound brightness mode and exhibit visible and/or near-infrared fluorescence imaging capabilities. NGQDs synthesized from glucosamine precursors with only a few percent metal doping do not introduce additional toxicity in vitro, yielding over 80% cell viability up to 2 mg/mL doses. Their small (<50 nm) sizes warrant effective cell internalization, while oxygen-containing surface functional groups decorating their surfaces render NGQDs water soluble and allow for the attachment of therapeutics and targeting agents. Utilizing visible and/or NIR fluorescence, we demonstrate that metal-doped NGQDs experience maximum accumulation within the HEK-293 cells 6-12 h after treatment. The successful 10-fold ultrasound signal enhancement is observed at 0.5-1.6 mg/mL for most metal-doped NGQDs in the vascular phantom, agarose gel, and animal tissue. A combination of non-invasive ultrasound imaging with capabilities of high-precision fluorescence tracking makes these metal-doped NGQDs a viable agent for a variety of theragnostic applications.


Assuntos
Grafite , Pontos Quânticos , Animais , Humanos , Células HEK293 , Nitrogênio , Imagem Óptica , Ultrassonografia
5.
Materials (Basel) ; 15(16)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36013894

RESUMO

Early-stage pancreatic cancer remains challenging to detect, leading to a poor five-year patient survival rate. This obstacle necessitates the development of early detection approaches based on novel technologies and materials. In this work, the presence of a specific pancreatic cancer-derived miRNA (pre-miR-132) is detected using the fluorescence properties of biocompatible nitrogen-doped graphene quantum dots (NGQDs) synthesized using a bottom-up approach from a single glucosamine precursor. The sensor platform is comprised of slightly positively charged (1.14 ± 0.36 mV) NGQDs bound via π-π stacking and/or electrostatic interactions to the negatively charged (-22.4 ± 6.00 mV) bait ssDNA; together, they form a complex with a 20 nm average size. The NGQDs' fluorescence distinguishes specific single-stranded DNA sequences due to bait-target complementarity, discriminating them from random control sequences with sensitivity in the micromolar range. Furthermore, this targetability can also detect the stem and loop portions of pre-miR-132, adding to the practicality of the biosensor. This non-invasive approach allows cancer-specific miRNA detection to facilitate early diagnosis of various forms of cancer.

6.
In Silico Pharmacol ; 10(1): 2, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34926126

RESUMO

One of the primary cancer treatment modalities is chemotherapy. Unfortunately, traditional anti-cancer drugs are often not selective and cause damage to healthy cells, leading to serious side effects for patients. For this reason more targeted therapeutics and drug delivery methods are being developed. The effectiveness of new treatments is initially determined via in vitro cell viability assays, which determine the IC 50  of the drug. However, these assays are known to result in estimates of IC 50  that depend on the measurement time, possibly resulting in over- or under-estimation of the IC 50 . Here, we test the possibility of using cell growth curves and fitting of mathematical models to determine the IC 50  as well as the maximum efficacy of a drug ( ε max ). We measured cell growth of MCF-7 and HeLa cells in the presence of different concentrations of doxorubicin and fit the data with a logistic growth model that incorporates the effect of the drug. This method leads to measurement time-independent estimates of IC 50  and ε max , but we find that ε max  is not identifiable. Further refinement of this methodology is needed to produce uniquely identifiable parameter estimates.

7.
Nanomedicine ; 37: 102408, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34015513

RESUMO

This work develops a new multifunctional biocompatible anticancer nanoformulation to provide targeted image-guided cancer-selective therapeutics. It consists of three active covalently bound components: (1) biocompatible nitrogen-doped graphene quantum dots (GQDs) as a multifunctional delivery and imaging platform, (2) hyaluronic acid (HA) unit targeted to the CD44 receptors on a variety of cancer cells, and (3) oxidative stress-based cancer-selective ferrocene (Fc) therapeutic. The biocompatible GQD platform synthesized from glucosamine exhibits high-yield intrinsic fluorescence. It is utilized for tracking Fc-GQD-HA formulation in vitro indicating internalization enhancement in HeLa cells targeted by the HA over non-cancer HEK-293 cells not overexpressing CD44 receptor. Fc-GQD-HA, non-toxic at 1 mg/mL to HEK-293 cells, induces cytotoxic response in HeLa enhanced over time, while therapeutic ROS generation by Fc-GQD-HA is ~3 times greater than that of Fc alone. This outlines the targeted delivery, imaging, and cancer-specific treatment capabilities of the new Fc-GQD-HA formulation enabling desired cancer-focused nanotherapeutic approach.


Assuntos
Sistemas de Liberação de Medicamentos , Grafite/farmacologia , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Antineoplásicos/química , Antineoplásicos/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Doxorrubicina/química , Doxorrubicina/farmacologia , Grafite/química , Células HEK293 , Células HeLa , Humanos , Receptores de Hialuronatos/antagonistas & inibidores , Receptores de Hialuronatos/genética , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Neoplasias/genética , Neoplasias/patologia , Imagem Óptica , Oxirredução/efeitos dos fármacos , Pontos Quânticos/química
8.
Materials (Basel) ; 14(3)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33572783

RESUMO

Non-invasive temperature sensing is necessary to analyze biological processes occurring in the human body, including cellular enzyme activity, protein expression, and ion regulation. To probe temperature-sensitive processes at the nanoscale, novel luminescence nanothermometers are developed based on graphene quantum dots (GQDs) synthesized via top-down (RGQDs) and bottom-up (N-GQDs) approaches from reduced graphene oxide and glucosamine precursors, respectively. Because of their small 3-6 nm size, non-invasive optical sensitivity to temperature change, and high biocompatibility, GQDs enable biologically safe sub-cellular resolution sensing. Both GQD types exhibit temperature-sensitive yet photostable fluorescence in the visible and near-infrared for RGQDs, utilized as a sensing mechanism in this work. Distinctive linear and reversible fluorescence quenching by up to 19.3% is observed for the visible and near-infrared GQD emission in aqueous suspension from 25 °C to 49 °C. A more pronounced trend is observed with GQD nanothermometers internalized into the cytoplasm of HeLa cells as they are tested in vitro from 25 °C to 45 °C with over 40% quenching response. Our findings suggest that the temperature-dependent fluorescence quenching of bottom-up and top-down-synthesized GQDs studied in this work can serve as non-invasive reversible/photostable deterministic mechanisms for temperature sensing in microscopic sub-cellular biological environments.

9.
Nanomaterials (Basel) ; 11(1)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33435595

RESUMO

With 18 million new cases diagnosed each year worldwide, cancer strongly impacts both science and society. Current models of cancer cell growth and therapeutic efficacy in vitro are time-dependent and often do not consider the Emax value (the maximum reduction in the growth rate), leading to inconsistencies in the obtained IC50 (concentration of the drug at half maximum effect). In this work, we introduce a new dual experimental/modeling approach to model HeLa and MCF-7 cancer cell growth and assess the efficacy of doxorubicin chemotherapeutics, whether alone or delivered by novel nitrogen-doped graphene quantum dots (N-GQDs). These biocompatible/biodegradable nanoparticles were used for the first time in this work for the delivery and fluorescence tracking of doxorubicin, ultimately decreasing its IC50 by over 1.5 and allowing for the use of up to 10 times lower doses of the drug to achieve the same therapeutic effect. Based on the experimental in vitro studies with nanomaterial-delivered chemotherapy, we also developed a method of cancer cell growth modeling that (1) includes an Emax value, which is often not characterized, and (2), most importantly, is measurement time-independent. This will allow for the more consistent assessment of the efficiency of anti-cancer drugs and nanomaterial-delivered formulations, as well as efficacy improvements of nanomaterial delivery.

10.
Nanotechnology ; 32(1): 015709, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32942267

RESUMO

Graphene oxide (GO), a functional derivative of graphene, is a promising nanomaterial for a variety of optoelectronic applications as it exhibits fluorescence and maintains many of graphene's beneficial physical properties. although other graphene derivatives are chemically plausible and may serve to the benefit of the aforementioned applications, GO remains the one heavily used. the nature of optical behavior of other graphene derivatives has yet to be fully understood and studied. in this work we develop a variety of graphene derivatives and characterize their optical properties concomitantly suggesting a unified model for optical emission in graphene derivatives. in this process we examine the influence of different functional groups on the surface of graphene on its optoelectronic properties. mildly oxidized graphene (oxo-g1), nitrated graphene, arylated graphene, brominated graphene, and fluorinated graphene are obtained and characterized via TEM and EDX, FTIR and fluorescence spectroscopies with the latter indicating a potential band gap-derived fluorescence from each of the materials. this suggests that optical properties of graphene derivatives have minimal functional group dependence and are manifested by the localized environments within the flakes. this is confirmed by the hyperchem theoretical modeling of all aforementioned graphene derivatives indicating a similar electronic configuration for all, assessed by the pm3 semi-empirical approach. this work can further serve to describe and predict optical properties of similar graphene-based structures and promote graphene derivatives other than GO for utilization in research and industry.

11.
Nanotechnology ; 32(9): 095103, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33126228

RESUMO

Graphene quantum dots (GQDs) are unique derivatives of graphene that show promise in multiple biomedical applications as biosensors, bioimaging agents, and drug/gene delivery vehicles. Their ease in functionalization, biocompatibility, and intrinsic fluorescence enable those modalities. However, GQDs lack deep tissue magnetic resonance imaging (MRI) capabilities desirable for diagnostics. Considering that the drawbacks of MRI contrast agent toxicity are still poorly addressed, we develop novel Mn2+ or Gd3+ doped nitrogen-containing graphene quantum dots (NGQDs) to equip the GQDs with MRI capabilities and at the same time render contrast agents biocompatible. Water-soluble biocompatible Mn-NGQDs and Gd-NGQDs synthesized via single-step microwave-assisted scalable hydrothermal reaction enable dual MRI and fluorescence modalities. These quasi-spherical 3.9-6.6 nm average-sized structures possess highly crystalline graphitic lattice structure with 0.24 and 0.53 atomic % for Mn2+ and Gd3+ doping. This structure ensures high in vitro biocompatibility of up to 1.3 mg ml-1 and 1.5 mg ml-1 for Mn-NGQDs and Gd-NGQDs, respectively, and effective internalization in HEK-293 cells traced by intrinsic NGQD fluorescence. As MRI contrast agents with considerably low Gd and Mn content, Mn-NGQDs exhibit substantial transverse/longitudinal relaxivity (r 2/r 1) ratios of 11.190, showing potential as dual-mode longitudinal or transverse relaxation time (T 1 or T 2) contrast agents, while Gd-NGQDs possess r 2/r 1 of 1.148 with high r 1 of 9.546 mM-1 s-1 compared to commercial contrast agents, suggesting their potential as T1 contrast agents. Compared to other nanoplatforms, these novel Mn2+ and Gd3+ doped NGQDs not only provide scalable biocompatible alternatives as T1/T2 and T1 contrast agents but also enable in vitro intrinsic fluorescence imaging.

12.
ACS Biomater Sci Eng ; 6(12): 6971-6980, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33320629

RESUMO

Near-infrared (NIR) fluorescence provides a new avenue for biomedical fluorescence imaging that allows for the tracking of fluorophore through several centimeters of biological tissue. However, such fluorophores are rare and, due to accumulation-derived toxicity, are often restricted from clinical applications. Deep tissue imaging not only provided by near-infrared fluorophores but also conventionally carried out by magnetic resonance imaging (MRI) or computed tomography (CT) is also hampered by the toxicity of the contrast agents. This work offers a biocompatible imaging solution: cerium oxide (CeO2) nanocubes doped with ytterbium or neodymium, and co-doped with gadolinium, showing simultaneous potential for near-infrared (NIR) fluorescence and magnetic resonance imaging (MRI) applications. A synthetic process described in this work allows for the stable incorporation of ytterbium or neodymium, both possessing emissive transitions in the NIR. As a biocompatible nanomaterial, the CeO2 nanocubes act as an ideal host material for doping, minimizing lanthanide fluorescence self-quenching as well as any potential toxicity associated with the dopants. The uptake of nanocubes by HeLa cells maximized at 12 h was monitored by hyperspectral imaging of the ytterbium or neodymium NIR emission, indicating the capacity of the lanthanide-doped nanocubes for in vitro and a potential for in vivo fluorescence imaging. The co-doped nanocubes demonstrate no significant loss of NIR emission intensity upon co-doping with 2 atomic % gadolinium and exhibit magnetic susceptibilities in the range of known negative contrast agents. However, a small increase to 6 atomic % gadolinium significantly affects the magnetic susceptibility ratio (r2/r1), shifting closer to the positive contrast range and suggesting the potential use of the CeO2 nanocube matrix doped with selected rare-earth ions as a tunable MRI contrast agent with NIR imaging capabilities.


Assuntos
Cério , Metais Terras Raras , Células HeLa , Humanos , Imageamento por Ressonância Magnética
13.
Nanotechnology ; 31(46): 465203, 2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-32756025

RESUMO

With the advent of graphene, there has been an interest in utilizing this material and its derivative, graphene oxide (GO) for novel applications in nanodevices such as bio and gas sensors, solid-state supercapacitors and solar cells. Although GO exhibits lower conductivity and structural stability, it possesses an energy band gap that enables fluorescence emission in the visible/near infrared leading to a plethora of optoelectronic applications. In order to allow fine-tuning of its optical properties in the device geometry, new physical techniques are required that, unlike existing chemical approaches, yield substantial alteration of GO structure. Such a desired new technique is one that is electronically controlled and leads to reversible changes in GO optoelectronic properties. In this work, we for the first time investigate the methods to controllably alter the optical response of GO with the electric field and provide theoretical modeling of the electric field-induced changes. Field-dependent GO emission is studied in bulk GO/polyvinylpyrrolidone films with up to 6% reversible decrease under 1.6 V µm-1 electric fields. On an individual flake level, a more substantial over 50% quenching is achieved for select GO flakes in a polymeric matrix between interdigitated microelectrodes subject to two orders of magnitude higher fields. This effect is modeled on a single exciton level by utilizing Wentzel, Kremer, and Brillouin approximation for electron escape from the exciton potential well. In an aqueous suspension at low fields, GO flakes exhibit electrophoretic migration, indicating a degree of charge separation and a possibility of manipulating GO materials on a single-flake level to assemble electric field-controlled microelectronics. As a result of this work, we suggest the potential of varying the optical and electronic properties of GO via the electric field for the advancement and control over its optoelectronic device applications.

15.
Nanomaterials (Basel) ; 9(12)2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31775318

RESUMO

Although conventional antibiotics have evolved as a staple of modern medicine, increasing antibiotic resistance and the lack of antibiotic efficacy against new bacterial threats is becoming a major medical threat. In this work, we employ single-walled carbon nanotubes (SWCNTs) known to deliver and track therapeutics in mammalian cells via intrinsic near-infrared fluorescence as carriers enhancing antibacterial delivery of doxycycline and methicillin. SWCNTs dispersed in water by antibiotics without the use of toxic bile salt surfactants facilitate efficacy enhancement for both antibiotics against Staphylococcus epidermidis strain showing minimal sensitivity to methicillin. Doxycycline to which the strain did not show resistance in complex with SWCNTs provides only minor increase in efficacy, whereas the SWCNTs/methicillin complex yields up to 40-fold efficacy enhancement over antibiotics alone, suggesting that SWCNT-assisted delivery may circumvent antibiotic resistance in that bacterial strain. At the same time SWCNT/antibiotic formulations appear to be less toxic to mammalian cells than antibiotics alone suggesting that nanomaterial platforms may not restrict potential biomedical applications. The improvement in antibacterial performance with SWCNT delivery is tested via 3 independent assays-colony count, MIC (Minimal Inhibitory Concentration) turbidity and disk diffusion, with the statistical significance of the latter verified by ANOVA and Dunnett's method. The potential mechanism of action is attributed to SWCNT interactions with bacterial cell wall and adherence to the membrane, as substantial association of SWCNT with bacteria is observed-the near-infrared fluorescence microscopy of treated bacteria shows localization of SWCNT fluorescence in bacterial clusters, scanning electron microscopy verifies SWCNT association with bacterial surface, whereas transmission electron microscopy shows individual SWCNT penetration into bacterial cell wall. This work characterizes SWCNTs as novel advantageous antibiotic delivery/imaging agents having the potential to address antibiotic resistance.

16.
ACS Appl Mater Interfaces ; 11(42): 39035-39045, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31553149

RESUMO

Nitrogen-doped graphene quantum dots (NGQDs) synthesized from a single glucosamine precursor are utilized to develop a novel UV photodetector. Optical properties of NGQDs can be altered with short- (254 nm), mid- (302 nm), and long-wave (365 nm) ultraviolet (UV) exposure leading to the reduction of absorption from deep to mid UV (200-320 nm) and enhancement above 320 nm. Significant quenching of blue and near-IR fluorescence accompanied by the dramatic increase of green/yellow emission of UV-treated NGQDs can be used as a potential UV-sensing mechanism. These emission changes are attributed to the reduction of functional groups detected by Fourier transformed infrared spectroscopy and free-radical-driven polymerization of the NGQDs increasing their average size from 4.70 to 11.20 nm at 60 min treatment. Due to strong UV absorption and sensitivity to UV irradiation, NGQDs developed in this work are utilized to fabricate UV photodetectors. Tested under long-/mid-/short-wave UV, these devices show high photoresponsivity (up to 0.59 A/W) and excellent photodetectivity (up to 1.03 × 1011 Jones) with highly characteristic wavelength-dependent reproducible response. This study suggests that the optical/structural properties of NGQDs can be controllably altered via different wavelength UV treatment leading us to fabricate NGQD-based novel UV photodetectors providing high responsivity and detectivity.

17.
Cancers (Basel) ; 11(8)2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31416250

RESUMO

Single-walled carbon nanotubes (SWCNTs) can serve as drug delivery/biological imaging agents, as they exhibit intrinsic fluorescence in the near-infrared, allowing for deeper tissue imaging while providing therapeutic transport. In this work, CoMoCAT (Cobalt Molybdenum Catalyst) SWCNTs, chirality-sorted by aqueous two-phase extraction, are utilized for the first time to deliver a drug/gene combination therapy and image each therapeutic component separately via chirality-specific SWCNT fluorescence. Each of (7,5) and (7,6) sorted SWCNTs were non-covalently loaded with their specific payload: the PI3 kinase inhibitor targeting liver fibrosis or CCR5 siRNA targeting inflammatory pathways with the goal of addressing these processes in nonalcoholic steatohepatitis (NASH), ultimately to prevent its progression to hepatocellular carcinoma. PX-866-(7,5) SWCNTs and siRNA-(7,6) SWCNTs were each imaged via characteristic SWCNT emission at 1024/1120 nm in HepG2 and HeLa cells by hyperspectral fluorescence microscopy. Wavelength-resolved imaging verified the intracellular transport of each SWCNT chirality and drug release. The therapeutic efficacy of each formulation was further demonstrated by the dose-dependent cytotoxicity of SWCNT-bound PX-866 and >90% knockdown of CCR5 expression with SWCNT/siRNA transfection. This study verifies the feasibility of utilizing chirality-sorted SWCNTs for the delivery and component-specific imaging of combination therapies, also suggesting a novel nanotherapeutic approach for addressing the progressions of NASH to hepatocellular carcinoma.

18.
ACS Biomater Sci Eng ; 5(9): 4671-4682, 2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-33448839

RESUMO

Despite significant advances of nanomedicine, the issues of biocompatibility, accumulation-derived toxicity, and the lack of sensing and in vivo imaging capabilities hamper the translation of most nanocarriers into clinic. To address this, we utilize nitrogen, boron/nitrogen, and sulfur-doped graphene quantum dots (GQDs) as fully biocompatible multifunctional platforms allowing for multicolor visible/near-IR imaging and cancer-sensing. These GQDs are scalably produced in one-step synthesis from a single biocompatible glucosamine precursor, are water-soluble, show no cytotoxicity at high concentrations of 1 mg/mL, and demonstrate substantial degradation at 36 h in biological environments as verified by TEM imaging. Because of their small sizes, GQDs exhibit efficient internalization maximized at 12 h followed by further degradation/excretion. Their high-yield intrinsic fluorescence in blue/green and near-infrared allows for multicolor in vitro imaging on its own or in combination with other fluorophores, and offers the capabilities for in vivo near-IR fluorescence tracking. Additionally, nitrogen- and sulfur-doped GQDs exhibit pH-dependent fluorescence response that is successfully utilized as a sensing mechanism for acidic extracellular environments of cancer cells. It allows for the deterministic, ratiometric spectral discrimination between cancerous (HeLa and MCF-7 cell) versus healthy (HEK-293 cell) environments with substantial intensity ratios of 1.6 to 8. These results suggest fully biocompatible GQDs developed in this work as multifunctional candidates for in vitro delivery of active agents, multicolor visible/near-IR fluorescence imaging, and pH-sensing of cancerous environments.

19.
J Phys Chem Lett ; 9(23): 6689-6694, 2018 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-30399316

RESUMO

The chirality-selective near-infrared emission of surfactant-stabilized single-wall carbon nanotubes could be controlled by simply varying the anion of the commonly used 1-butyl-3-methylimidazolium ionic liquids. This result advances the notion of the designer solvent ability of ionic liquids and provides opportunities for modulating the properties of nanomaterials.

20.
Sci Rep ; 7(1): 6411, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28743864

RESUMO

Graphene oxide (GO) is a graphene derivative that emits fluorescence, which makes GO an attractive material for optoelectronics and biotechnology. In this work, we utilize ozone treatment to controllably tune the band gap of GO, which can significantly enhance its applications. Ozone treatment in aqueous GO suspensions yields the addition/rearrangement of oxygen-containing functional groups suggested by the increase in vibrational transitions of C-O and C=O moieties. Concomitantly it leads to an initial increase in GO fluorescence intensity and significant (100 nm) blue shifts in emission maxima. Based on the model of GO fluorescence originating from sp2 graphitic islands confined by oxygenated addends, we propose that ozone-induced functionalization decreases the size of graphitic islands affecting the GO band gap and emission energies. TEM analyses of GO flakes confirm the size decrease of ordered sp2 domains with ozone treatment, whereas semi-empirical PM3 calculations on model addend-confined graphitic clusters predict the inverse dependence of the band gap energies on sp2 cluster size. This model explains ozone-induced increase in emission energies yielding fluorescence blue shifts and helps develop an understanding of the origins of GO fluorescence emission. Furthermore, ozone treatment provides a versatile approach to controllably alter GO band gap for optoelectronics and bio-sensing applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...