Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 194(12): 877, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36229620

RESUMO

Flowering exhibits a significant relationship with environmental stimuli and changes. Effect of photoperiodism and vernalization have been well studied in flowering phenology; however, the effect of soil temperature on flowering is less explored which is one of the major factors of vegetation growth in alpine ecosystem. This study thus focuses on the effects of soil and air temperature on flowering response of Rhododendron arboreum Sm., a Himalayan tree species, which is also an indicator of spring initiation in high altitude regions. To monitor the flowering pattern, we employed automated phenocam, which was set up at 3356 masl in Tungnath (Indian Alpine region of Uttarakhand) for time-lapse photography of timberline ecotone. Soil and air temperature were recorded continuously at the timberline ecotone. Three years (2017 to 2020) of datasets were used for the present study. The phenocam observations displayed an interesting event in the year 2019-2020 with complete absence of flowering in R. arboreum population at Tungnath timberline ecotone. From the soil temperature data, an increase in winter (Dec-Jan, during which floral buds form) soil temperature, by > 1 °C, and no accumulation of freezing degree-days were found for the year 2019-2020. Air temperature however did not display any relationship with the failure of flowering, ruling out aerial chilling or frost injury of floral buds. From the results, a possible relationship between soil temperature and flowering can be suggested pointing towards necessary root apex vernalization stimulus in shallow rooted Rhododendrons. However, the dependency of flowering in Rhododendrons on winter soil temperature further requires continuous monitoring and more observations to make concrete inferences.


Assuntos
Rhododendron , Mudança Climática , Ecossistema , Monitoramento Ambiental , Rhododendron/fisiologia , Estações do Ano , Solo , Temperatura
2.
Metabolites ; 12(6)2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35736473

RESUMO

Indian Himalayan region (IHR) supports a wide diversity of plants and most of them are known for their medicinal value. Humankind has been using medicinal plants since the inception of civilization. Various types of bioactive compounds are found in plants, which are directly and indirectly beneficial for plants as well as humans. These bioactive compounds are highly useful and being used as a strong source of medicines, pharmaceuticals, agrochemicals, food additives, fragrances, and flavoring agents. Apart from this, several plant species contain some toxic compounds that affect the health of many forms of life as well as cause their death. These plants are known as poisonous plants, because of their toxicity to both humans and animals. Therefore, it is necessary to know in what quantity they should be taken so that it does not have a negative impact on health. Recent studies on poisonous plants have raised awareness among people who are at risk of plant toxicity in different parts of the world. The main aim of this review article is to explore the current knowledge about the poisonous plants of the Indian Himalayas along with the importance of these poisonous plants to treat different ailments. The findings of the present review will be helpful to different pharmaceutical industries, the scientific community and researchers around the world.

3.
Heliyon ; 7(8): e07709, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34430728

RESUMO

Plant secondary metabolites (PSMs) are plant products that are discontinuously distributed throughout the plant kingdom. These secondary compounds have various chemical groups and are named according to their chemical constituents. For their ability to defend biotic and abiotic stresses they are considered as plants' defensive compounds. These metabolites take part in plant protection from insects, herbivores, and extreme environmental conditions. They are indirectly involved in plants' growth and development. Secondary metabolites are also used by people in the form of medicines, pharmaceuticals, agrochemicals, colors, fragrances, flavorings, food additives, biopesticides, and drugs development. However, the increase in atmospheric temperature by several anthropogenic activities majorly by the combustion of hydrocarbons is a great issue now. On the other hand, climate change leaves an impact on the quality and quantity of plant secondary metabolites. It is measured that several greenhouse gases (GHGs) are present in the atmosphere, like Chlorofluorocarbons (CFCs), nitrous oxides (NOx), Carbon dioxide (CO2), Methane (CH4) and Ozone (O3), etc. CO2, the major greenhouse gas is essential for photosynthesis. On the other hand, CO2 plays a significant role in the up-regulation of atmospheric temperature. Plants produce various types of primary metabolites such as carbohydrates, proteins, fats, membrane lipids, nucleic acids, and chlorophyll as well as a variety of secondary metabolites from photosynthesis. The high temperature in the atmosphere creates heat stress for plants. As a matter of fact many morphological, physiological and biochemical changes occur in the plant. The high temperature invariably elicits the production of several secondary metabolites within plants. Various strategies have been universally documented to improve the production of PSMs. With this objective, the focus of the current review is to further investigate and discuss futuristic scenarios the effect of elevated CO2 and high temperature on PSMs production which may perhaps beneficial for pharmaceutical industries, biotechnology industries, and also in climate change researches.

4.
Artigo em Inglês | MEDLINE | ID: mdl-31275412

RESUMO

The Indian Himalaya is rich in plant species, including many medicinal plants, greatly valued by local inhabitants for health care needs. The study in Urgam Valley of Uttarakhand, India, is to identity and document traditional knowledge of medicinal plants. The study revealed high consensus on medicinal plant usage, with 51 species belonging to 31 families used for local health care. Number of species and uses known increases with age, and elders and specialist healers retain higher levels of traditional medicinal plant knowledge, having unique knowledge of medicinal plants and their uses as well as preparation.

5.
J Biosci ; 38(1): 13-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23385808

RESUMO

Dormancy-breaking and seed germination studies in genus Lilium reveal that the majority of Lilium spp. studied have an underdeveloped embryo at maturity, which grows inside the seed before the radicle emerges. Additionally, the embryo, radicle or cotyledon has a physiological component of dormancy; thus, Lilium seeds have morphophysiological dormancy (MPD). A previous study suggested that seeds of Lilium polyphyllum have MPD but the study did not investigate the development of the embryo, which is one of the main criteria to determine MPD in seeds. To test this hypothesis, we investigated embryo growth and emergence of radicles and epicotyls in seeds over a range of temperatures. At maturity, seeds had underdeveloped embryos which developed fully at warm temperature within 6 weeks. Immediately after embryo growth, radicles also emerged at warm temperatures. However, epicotyls failed to emerge soon after radicle emergence. Epicotyls emerged from >90% seeds with an emerged radicle only after they were subjected to 2 weeks of cold moist stratification. The overall temperature requirements for dormancy-breaking and seed germination indicate a non-deep simple epicotyl MPD in L. polyphyllum.


Assuntos
Germinação/fisiologia , Lilium/crescimento & desenvolvimento , Dormência de Plantas/fisiologia , Sementes/crescimento & desenvolvimento , Lilium/embriologia , Estações do Ano , Sementes/embriologia , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...