Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 11(3): e0063023, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37227282

RESUMO

The Zika virus (ZIKV) is teratogenic and considered a TORCH pathogen (toxoplasmosis [Toxoplasma gondii], rubella, cytomegalovirus, herpes simplex virus [HSV], and other microorganisms capable of crossing the blood-placenta barrier). In contrast, the related flavivirus dengue virus (DENV) and the attenuated yellow fever virus vaccine strain (YFV-17D) are not. Understanding the mechanisms used by ZIKV to cross the placenta is necessary. In this work, parallel infections with ZIKV of African and Asian lineages, DENV, and YFV-17D were compared for kinetics and growth efficiency, activation of mTOR pathways, and cytokine secretion profile using cytotrophoblast-derived HTR8 cells and monocytic U937 cells differentiated to M2 macrophages. In HTR8 cells, ZIKV replication, especially the African strain, was significantly more efficient and faster than DENV or YFV-17D. In macrophages, ZIKV replication was also more efficient, although differences between strains were reduced. Greater activation of the mTORC1 and mTORC2 pathways in HTR8 cells infected with ZIKV than with DENV or YFV-17D was observed. HTR8 cells treated with mTOR inhibitors showed a 20-fold reduction in ZIKV yield, versus 5- and 3.5-fold reductions for DENV and YFV-17D, respectively. Finally, infection with ZIKV, but not DENV or YFV-17D, efficiently inhibited the interferon (IFN) and chemoattractant responses in both cell lines. These results suggest a gating role for the cytotrophoblast cells in favoring entry of ZIKV, but not DENV and YFV-17D, into the placental stroma. IMPORTANCE Zika virus acquisition during pregnancy is associated with severe fetal damage. The Zika virus is related to dengue virus and yellow fever virus, yet fetal damage has not been related to dengue or inadvertent vaccination for yellow fever during pregnancy. Mechanisms used by the Zika virus to cross the placenta need to be deciphered. By comparing parallel infections of Zika virus strains belonging to the African and Asian lineages, dengue virus, and the yellow fever vaccine virus strain YFV-17D in placenta-derived cytotrophoblast cells and differentiated macrophages, evidence was found that Zika virus infections, especially by the African strains, were more efficient in cytotrophoblast cells than dengue virus or yellow fever vaccine virus strain infections. Meanwhile, no significant differences were observed in macrophages. Robust activation of the mTOR signaling pathways and inhibition of the IFN and chemoattractant response appear to be related to the better growth capacity of the Zika viruses in the cytotrophoblast-derived cells.


Assuntos
Vírus da Dengue , Dengue , Flavivirus , Vacina contra Febre Amarela , Febre Amarela , Infecção por Zika virus , Zika virus , Humanos , Feminino , Gravidez , Febre Amarela/prevenção & controle , Trofoblastos , Placenta , Vírus da Febre Amarela , Serina-Treonina Quinases TOR
2.
Int J Mol Sci ; 24(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36902058

RESUMO

Whether neuroinflammation leads to dopaminergic nigrostriatal system neurodegeneration is controversial. We addressed this issue by inducing acute neuroinflammation in the substantia nigra (SN) with a single local administration (5 µg/2 µL saline solution) of lipopolysaccharide (LPS). Neuroinflammatory variables were assessed from 48 h to 30 days after the injury by immunostaining for activated microglia (Iba-1 +), neurotoxic A1 astrocytes (C3 + and GFAP +), and active caspase-1. We also evaluated NLRP3 activation and Il-1ß levels by western blot and mitochondrial complex I (CI) activity. Fever and sickness behavior was assessed for 24 h, and motor behavior deficits were followed up until day 30. On this day, we evaluated the cellular senescence marker ß-galactosidase (ß-Gal) in the SN and tyrosine hydroxylase (TH) in the SN and striatum. After LPS injection, Iba-1 (+), C3 (+), and S100A10 (+) cells were maximally present at 48 h and reached basal levels on day 30. NLRP3 activation occurred at 24 h and was followed by a rise of active caspase-1 (+), Il-1ß, and decreased mitochondrial CI activity until 48 h. A significant loss of nigral TH (+) cells and striatal terminals was associated with motor deficits on day 30. The remaining TH (+) cells were ß-Gal (+), suggesting senescent dopaminergic neurons. All the histopathological changes also appeared on the contralateral side. Our results show that unilaterally LPS-induced neuroinflammation can cause bilateral neurodegeneration of the nigrostriatal dopaminergic system and are relevant for understanding Parkinson's disease (PD) neuropathology.


Assuntos
Inflamassomos , Transtornos Parkinsonianos , Ratos , Animais , Inflamassomos/metabolismo , Lipopolissacarídeos/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Doenças Neuroinflamatórias , Transtornos Parkinsonianos/metabolismo , Substância Negra/metabolismo , Neurônios Dopaminérgicos/metabolismo , Caspase 1/metabolismo , Dopamina/metabolismo , Microglia/metabolismo
3.
Pathogens ; 13(1)2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38251344

RESUMO

Tuberculosis (TB) of the central nervous system (CNS) is a lethal and incapacitating disease. Several studies have been performed to understand the mechanism of bacterial arrival to CNS, however, it remains unclear. Although the interaction of the host, the pathogen, and the environment trigger the course of the disease, in TB the characteristics of these factors seem to be more relevant in the genesis of the clinical features of each patient. We previously tested three mycobacterial clinical isolates with distinctive genotypes obtained from the cerebrospinal fluid of patients with meningeal TB and showed that these strains disseminated extensively to the brain after intratracheal inoculation and pulmonary infection in BALB/c mice. In this present study, BALB/c mice were infected through the intranasal route. One of these strains reaches the olfactory bulb at the early stage of the infection and infects the brain before the lungs, but the histological study of the nasal mucosa did not show any alteration. This observation suggests that some mycobacteria strains can arrive directly at the brain, apparently toward the olfactory nerve after infecting the nasal mucosa, and guides us to study in more detail during mycobacteria infection the nasal mucosa, the associated connective tissue, and nervous structures of the cribriform plate, which connect the nasal cavity with the olfactory bulb.

4.
Int J Mol Sci ; 23(21)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36362435

RESUMO

In giardiasis, diarrhoea, dehydration, malabsorption, weight loss and/or chronic inflammation are indicative of epithelial barrier dysfunction. However, the pathogenesis of giardiasis is still enigmatic in many aspects. Here, we show evidence that a cysteine protease of Giardia duodenalis called giardipain-1, contributes to the pathogenesis of giardiasis induced by trophozoites of the WB strain. In an experimental system, we demonstrate that purified giardipain-1 induces apoptosis and extrusion of epithelial cells at the tips of the villi in infected jirds (Meriones unguiculatus). Moreover, jird infection with trophozoites expressing giardipain-1 resulted in intestinal epithelial damage, cellular infiltration, crypt hyperplasia, goblet cell hypertrophy and oedema. Pathological alterations were more pronounced when jirds were infected intragastrically with Giardia trophozoites that stably overexpress giardipain-1. Furthermore, Giardia colonization in jirds results in a chronic inflammation that could relate to the dysbiosis triggered by the protist. Taken together, these results reveal that giardipain-1 plays a key role in the pathogenesis of giardiasis.


Assuntos
Cisteína Proteases , Giardia lamblia , Giardíase , Animais , Cisteína Proteases/genética , Gerbillinae , Giardia , Trofozoítos , Mucosa Intestinal/patologia , Homeostase , Inflamação
5.
Exp Neurobiol ; 31(4): 270-276, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36050226

RESUMO

Transsynaptic transport is the most accepted proposal to explain the SARS-CoV-2 infection of the CNS. Nevertheless, emerging evidence shows that neurons do not express the SARS-CoV-2 receptor ACE2, which highlights the importance of the blood-brain barrier (BBB) in preventing virus entry to the brain. In this study, we examine the presence of SARS-CoV-2 messenger ribonucleic acid (mRNA) and the cytokine profile in cerebrospinal fluids (CSF) from two patients with a brain tumor and COVID-19. To determine the BBB damage, we evaluate the Q- albumin index, which is an indirect parameter to assess the permeability of this structure. The Q-albumin index of the patient with an intraventricular brain tumor suggests that the BBB is undamaged, preventing the passage of SARS-CoV-2 and pro-inflammatory molecules. The development of brain tumors that disrupt the BBB (measured by the Q-albumin index), in this case, a petroclival meningioma (Case 1), allows the free passage of the SARS-CoV-2 virus and probably lets the free transit of pro-inflammatory molecules to the CNS, which leads to a possible activation of the microglia (astrogliosis) and an exacerbated immune response represented by IL-13, IFN-γ, and IL-2 trying to inhibit both the infection and the carcinogenic process.

6.
Front Cell Infect Microbiol ; 12: 928687, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36093180

RESUMO

Enolase, a multifunctional protein expressed by multiple pathogens activates plasminogen to promote proteolysis on components of the extracellular matrix, an important event in early host-pathogen interactions. A secreted form of enolase that is released upon the interaction of trophozoites with epithelial cells has been detected in the secretome of G. duodenalis. However, the role of enolase in the host-pathogen interactions remains largely unknown. In this work, the effects of G. duodenalis enolase (Gd-eno) on the epithelial cell model (IEC-6) were analyzed. Firstly, the coding sequence of Giardia enolase was cloned and the recombinant protein used to raise antibodies that were then used to define the localization and role of enolase in epithelial cell-trophozoite interactions. Gd-eno was detected in small cytoplasmic vesicles as well as at the surface and is enriched in the region of the ventral disk of Giardia trophozoites. Moreover, the blocking of the soluble monomeric form of the enzyme, which is secreted upon interaction with IEC-6 cells by the anti-rGd-eno antibodies, significantly inhibited trophozoite attachment to intestinal IEC-6 cell monolayers. Further, rGd-eno was able to bind human plasminogen (HsPlg) and enhanced plasmin activity in vitro when the trophozoites were incubated with the intrinsic plasminogen activators of epithelial cells. In IEC-6 cells, rGd-eno treatment induced a profuse cell damage characterized by copious vacuolization, intercellular separation and detachment from the substrate; this effect was inhibited by either anti-Gd-eno Abs or the plasmin inhibitor ϵ- aminocaproic acid. Lastly, we established that in epithelial cells rGd-eno treatment induced a necroptotic-like process mediated by tumor necrosis factor α (TNF-α) and the apoptosis inducing factor (AIF), but independent of caspase-3. All together, these results suggest that Giardia enolase is a secreted moonlighting protein that stimulates a necroptotic-like process in IEC-6 epithelial cells via plasminogen activation along to TNFα and AIF activities and must be considered as a virulence factor.


Assuntos
Giardia lamblia , Giardíase , Animais , Comunicação Celular , Giardia/metabolismo , Giardia lamblia/metabolismo , Humanos , Fosfopiruvato Hidratase/metabolismo , Plasminogênio/metabolismo , Trofozoítos/metabolismo
7.
Immunol Lett ; 248: 99-108, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35841974

RESUMO

Inflammatory bowel diseases (IBD) including Crohn's disease (CD) and ulcerative colitis (UC) are complex inflammatory disorders of the digestive tract. Dysfunctional intestinal epithelial barrier, uncontrolled neutrophil recruitment into the colon, and oxidative stress are major features of IBD. IBD cannot be cured, but symptoms can be alleviated with anti-inflammatory drugs, which often show adverse effects. Thus, safer alternative treatment options are needed. Given the known anti-inflammatory properties of Annickia polycarpa extract (APE), we hypothesized that APE improves the outcome of the inflammatory response during colitis. We assessed APE effects on colon histology, epithelial barrier function and neutrophil recruitment during DSS-induced colitis in mice treated with APE. APE treatment significantly reduced the disease activity index and prevented DSS-induced colon damage as evidenced by reduced colon shortening, ulcerations, crypt dysplasia, edema formation, and leukocyte infiltration. Expression of the pro-inflammatory cytokines TNF-α, IL-6, and IL-1ß were significantly diminished in APE-treated mice. Importantly, APE administration reduced neutrophil infiltration into the lamina propria leading to reduced oxidative stress, tight junction disruption and epithelial permeability in the colon. Thus, we propose APE as additional treatment strategy to attenuate colitis symptoms and enhance life quality of individuals with IBD.


Assuntos
Colite Ulcerativa , Colite , Doenças Inflamatórias Intestinais , Animais , Anti-Inflamatórios/efeitos adversos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/patologia , Colite Ulcerativa/metabolismo , Colo/patologia , Sulfato de Dextrana/efeitos adversos , Sulfato de Dextrana/metabolismo , Modelos Animais de Doenças , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos
8.
Int J Mol Sci ; 23(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35742886

RESUMO

Central nervous system (CNS) tuberculosis is the most lethal and devastating form among the diseases caused by Mycobacterium tuberculosis. The mechanisms by which M. tuberculosis bacilli enter the CNS are still unclear. However, the BBB and the BCSFB have been proposed as possible routes of access into the brain. We previously reported that certain strains of M. tuberculosis possess an enhanced ability to cause secondary CNS infection in a mouse model of progressive pulmonary tuberculosis. Here, we evaluated the morphostructural and molecular integrity of CNS barriers. For this purpose, we analyzed through transmission electron microscopy the ultrastructure of brain parenchymal microvessels and choroid plexus epithelium from animals infected with two mycobacterial strains. Additionally, we determined the expression of junctional proteins and cytokines by immunological techniques. The results showed that the presence of M. tuberculosis induced disruption of the BCSFB but no disruption of the BBB, and that the severity of such damage was related to the strain used, suggesting that variations in the ability to cause CNS disease among distinct strains of bacteria may also be linked to their capacity to cause direct or indirect disruption of these barriers. Understanding the pathophysiological mechanisms involved in CNS tuberculosis may facilitate the establishment of new biomarkers and therapeutic targets.


Assuntos
Doenças do Sistema Nervoso Central , Tuberculose Meníngea , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo , Doenças do Sistema Nervoso Central/metabolismo , Epitélio , Camundongos
9.
J Immunol Res ; 2022: 2909487, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35402623

RESUMO

The process by which blood cells are generated has been widely studied in homeostasis and during pathogen-triggered inflammatory response. Recently, murine lungs have been shown to be a significant source of hematopoietic progenitors in a process known as extramedullary hematopoiesis. Using multiparametric flow cytometry, we have identified mesenchymal, endothelial, and hematopoietic progenitor cells that express the secreted small protein Isthmin 1 (ISM1). Further characterization of hematopoietic progenitor cells indicated that ISM1+ Lineage- Sca-1+ c-kit+ (ISM1+ LSK) cells are enriched in short-term hematopoietic stem cells (ST-HSCs). Moreover, most Sca-1+ ISM1+ cells express the residence marker CD49a, and this correlated with their localization in the extravascular region of the lung, indicating that ISM1+ cells are lung-resident cells. We also observed that ISM1+ cells express TLR4, TLR5, and TLR9, and, in a mouse model of sepsis induced by P. aeruginosa, we observed that all the LSK and ISM1+LSK cells were affected. We conclude that ISM1 is a novel biomarker associated with progenitor-like cells. ISM1+ cells are involved in the response to a bacterial challenge, suggesting an association between ISM1-producing cells and dangerous inflammatory responses like sepsis.


Assuntos
Células-Tronco Hematopoéticas , Sepse , Animais , Hematopoese , Homeostase , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas , Sepse/metabolismo
10.
Eur J Cell Biol ; 101(2): 151214, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35286924

RESUMO

Sepsis remains an important health problem worldwide due to inefficient treatments often resulting in multi-organ failure. Neutrophil recruitment is critical during sepsis. While neutrophils are required to combat invading bacteria, excessive neutrophil recruitment contributes to tissue damage due to their arsenal of molecular weapons that do not distinguish between host and pathogen. Thus, neutrophil recruitment needs to be fine-tuned to ensure bacterial killing, while avoiding neutrophil-inflicted tissue damage. We recently showed that the actin-binding protein HS1 promotes neutrophil extravasation; and hypothesized that HS1 is also a critical regulator of sepsis progression. We evaluated the role of HS1 in a model of lethal sepsis induced by cecal-ligation and puncture. We found that septic HS1-deficient mice had a better survival rate compared to WT mice due to absence of lung damage. Lungs of septic HS1-deficient mice showed less inflammation, fibrosis, and vascular congestion. Importantly, systemic CLP-induced neutrophil recruitment was attenuated in the lungs, the peritoneum and the cremaster in the absence of HS1. Lungs of HS1-deficient mice produced significantly more interleukin-10. Compared to WT neutrophils, those HS1-deficient neutrophils that reached the lungs had increased surface levels of Gr-1, ICAM-1, and L-selectin. Interestingly, HS1-deficient neutrophils had similar F-actin content and phagocytic activity, but they failed to polymerize actin and deform in response to CXCL-1 likely explaining the reduced systemic neutrophil recruitment in HS1-deficient mice. Our data show that HS1 deficiency protects against sepsis by attenuating neutrophil recruitment to amounts sufficient to combat bacterial infection, but insufficient to induce tissue damage.


Assuntos
Neutrófilos , Sepse , Animais , Modelos Animais de Doenças , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos/fisiologia , Neutrófilos/metabolismo
11.
Neural Regen Res ; 17(4): 854-866, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34472486

RESUMO

Overexpression of neurotrophic factors in nigral dopamine neurons is a promising approach to reverse neurodegeneration of the nigrostriatal dopamine system, a hallmark in Parkinson's disease. The human cerebral dopamine neurotrophic factor (hCDNF) has recently emerged as a strong candidate for Parkinson's disease therapy. This study shows that hCDNF expression in dopamine neurons using the neurotensin-polyplex nanoparticle system reverses 6-hydroxydopamine-induced morphological, biochemical, and behavioral alterations. Three independent electron microscopy techniques showed that the neurotensin-polyplex nanoparticles containing the hCDNF gene, ranging in size from 20 to 150 nm, enabled the expression of a secretable hCDNF in vitro. Their injection in the substantia nigra compacta on day 21 after the 6-hydroxydopamine lesion resulted in detectable hCDNF in dopamine neurons, whose levels remained constant throughout the study in the substantia nigra compacta and striatum. Compared with the lesioned group, tyrosine hydroxylase-positive (TH+) nigral cell population and TH+ fiber density rose in the substantia nigra compacta and striatum after hCDNF transfection. An increase in ßIII-tubulin and growth-associated protein 43 phospho-S41 (GAP43p) followed TH+ cell recovery, as well as dopamine and its catabolite levels. Partial reversal (80%) of drug-activated circling behavior and full recovery of spontaneous motor and non-motor behavior were achieved. Brain-derived neurotrophic factor recovery in dopamine neurons that also occurred suggests its participation in the neurotrophic effects. These findings support the potential of nanoparticle-mediated hCDNF gene delivery to develop a disease-modifying treatment against Parkinson's disease. The Institutional Animal Care and Use Committee of Centro de Investigación y de Estudios Avanzados approved our experimental procedures for animal use (authorization No. 162-15) on June 9, 2019.

12.
J Leukoc Biol ; 111(6): 1147-1158, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34826347

RESUMO

Severe coronavirus disease 2019 (COVID-19) is characterized by lung injury, cytokine storm, and increased neutrophil-to-lymphocyte ratio (NLR). Current therapies focus on reducing viral replication and inflammatory responses, but no specific treatment exists to prevent the development of severe COVID-19 in infected individuals. Angiotensin-converting enzyme-2 (ACE2) is the receptor for SARS-CoV-2, the virus causing COVID-19, but it is also critical for maintaining the correct functionality of lung epithelium and endothelium. Coronaviruses induce activation of a disintegrin and metalloprotease 17 (ADAM17) and shedding of ACE2 from the cell surface resulting in exacerbated inflammatory responses. Thus, we hypothesized that ADAM17 inhibition ameliorates COVID-19-related lung inflammation. We employed a preclinical mouse model using intratracheal instillation of a combination of polyinosinic:polycytidylic acid (poly(I:C)) and the receptor-binding domain of the SARS-CoV-2 spike protein (RBD-S) to mimic lung damage associated with COVID-19. Histologic analysis of inflamed mice confirmed the expected signs of lung injury including edema, fibrosis, vascular congestion, and leukocyte infiltration. Moreover, inflamed mice also showed an increased NLR as observed in critically ill COVID-19 patients. Administration of the ADAM17/MMP inhibitors apratastat and TMI-1 significantly improved lung histology and prevented leukocyte infiltration. Reduced leukocyte recruitment could be explained by reduced production of proinflammatory cytokines and lower levels of the endothelial adhesion molecules ICAM-1 and VCAM-1. Additionally, the NLR was significantly reduced by ADAM17/MMP inhibition. Thus, we propose inhibition of ADAM17/MMP as a novel promising treatment strategy in SARS-CoV-2-infected individuals to prevent the progression toward severe COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , Lesão Pulmonar , Proteína ADAM17 , Enzima de Conversão de Angiotensina 2 , Animais , Modelos Animais de Doenças , Humanos , Lesão Pulmonar/etiologia , Lesão Pulmonar/prevenção & controle , Metaloproteinases da Matriz , Camundongos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
13.
Am J Pathol ; 191(9): 1537-1549, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34139193

RESUMO

Epithelial barrier impairment is a hallmark of several pathologic processes in the gut, including inflammatory bowel diseases. Several intracellular signals prevent apoptosis in intestinal epithelial cells. Herein, we show that in colonocytes, rictor/mammalian target of rapamycin complex 2 (mTORC2) signaling is a prosurvival stimulus. Mechanistically, mTORC2 activates Akt, which, in turn, inhibits apoptosis by phosphorylating B-cell lymphoma 2 (BCL2) associated agonist of cell death (Bad) and preventing caspase-3 activation. Nevertheless, during inflammation, rictor/mTORC2 signaling declines and Akt activity is reduced. Consequently, active caspase-3 increases in surface colonocytes undergoing apoptosis/anoikis and causes epithelial barrier breakdown. Likewise, Rictor ablation in intestinal epithelial cells interrupts mTORC2/Akt signaling and increases apoptosis/anoikis of surface colonocytes without affecting the crypt architecture. The increase in epithelial permeability induced by Rictor ablation produces a mild inflammatory response in the colonic mucosa, but minimally affects the development/establishment of colitis. The data identify a previously unknown mechanism by which rictor/mTORC2 signaling regulates apoptosis/anoikis in intestinal epithelial cells during colitis and clarify its role in the maintenance of the intestinal epithelial barrier.


Assuntos
Apoptose/fisiologia , Colite/patologia , Células Epiteliais/metabolismo , Mucosa Intestinal/patologia , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Animais , Colite/metabolismo , Células Epiteliais/patologia , Mucosa Intestinal/metabolismo , Camundongos , Transdução de Sinais/fisiologia
14.
J Vis Exp ; (172)2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34180884

RESUMO

Epithelial cells lining the intestinal mucosa create a physical barrier that separates the luminal content from the interstitium. Epithelial barrier impairment has been associated with the development of various pathologies such as inflammatory bowel diseases (IBD). In the inflamed mucosa, superficial erosions or micro-erosions that corrupt epithelial monolayers correspond to sites of high permeability. Several mechanisms have been implicated in the formation of micro-erosions including cell shedding and apoptosis. These micro-erosions often represent microscopic epithelial gaps randomly distributed in the colon. Visualization and quantification of those epithelial gaps has emerged as an important tool to investigate intestinal epithelial barrier function. Here, we describe a new method to visualize the specific location of where transcellular and paracellular permeability is enhanced in the inflamed colonic mucosa. In this assay, we apply a 10 kDa fluorescent dye conjugated to a lysine fixable dextran to visualize high permeability regions (HPR) in the colonic mucosa. Additional use of cell death markers revealed that HPR encompass apoptotic foci where epithelial extrusion/shedding occurs. The protocol described here provides a simple but effective approach to visualize and quantify micro-erosions in the intestine, which is a very useful tool in disease models, in which the intestinal epithelial barrier is compromised.


Assuntos
Doenças Inflamatórias Intestinais , Mucosa Intestinal , Colo , Células Epiteliais , Imunofluorescência , Humanos , Permeabilidade , Coloração e Rotulagem
15.
Front Cell Dev Biol ; 9: 625719, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34012961

RESUMO

The intestinal epithelial barrier (IEB) depends on stable interepithelial protein complexes such as tight junctions (TJ), adherens junctions (AJ), and the actin cytoskeleton. During inflammation, the IEB is compromised due to TJ protein internalization and actin remodeling. An important actin regulator is the actin-related protein 2/3 (Arp2/3) complex, which induces actin branching. Activation of Arp2/3 by nucleation-promoting factors is required for the formation of epithelial monolayers, but little is known about the relevance of Arp2/3 inhibition and endogenous Arp2/3 inhibitory proteins for IEB regulation. We found that the recently identified Arp2/3 inhibitory protein arpin was strongly expressed in intestinal epithelial cells. Arpin expression decreased in response to tumor necrosis factor (TNF)α and interferon (IFN)γ treatment, whereas the expression of gadkin and protein interacting with protein C-kinase α-subunit 1 (PICK1), other Arp2/3 inhibitors, remained unchanged. Of note, arpin coprecipitated with the TJ proteins occludin and claudin-1 and the AJ protein E-cadherin. Arpin depletion altered the architecture of both AJ and TJ, increased actin filament content and actomyosin contractility, and significantly increased epithelial permeability, demonstrating that arpin is indeed required for maintaining IEB integrity. During experimental colitis in mice, arpin expression was also decreased. Analyzing colon tissues from ulcerative colitis patients by Western blot, we found different arpin levels with overall no significant changes. However, in acutely inflamed areas, arpin was significantly reduced compared to non-inflamed areas. Importantly, patients receiving mesalazine had significantly higher arpin levels than untreated patients. As arpin depletion (theoretically meaning more active Arp2/3) increased permeability, we wanted to know whether Arp2/3 inhibition would show the opposite. Indeed, the specific Arp2/3 inhibitor CK666 ameliorated TNFα/IFNγ-induced permeability in established Caco-2 monolayers by preventing TJ disruption. CK666 treatment also attenuated colitis development, colon tissue damage, TJ disruption, and permeability in dextran sulphate sodium (DSS)-treated mice. Our results demonstrate that loss of arpin triggers IEB dysfunction during inflammation and that low arpin levels can be considered a novel hallmark of acute inflammation.

16.
Front Immunol ; 11: 597959, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329591

RESUMO

CD38 is a molecule that can act as an enzyme, with NAD-depleting and intracellular signaling activity, or as a receptor with adhesive functions. CD38 can be found expressed either on the cell surface, where it may face the extracellular milieu or the cytosol, or in intracellular compartments, such as endoplasmic reticulum, nuclear membrane, and mitochondria. The main expression of CD38 is observed in hematopoietic cells, with some cell-type specific differences between mouse and human. The role of CD38 in immune cells ranges from modulating cell differentiation to effector functions during inflammation, where CD38 may regulate cell recruitment, cytokine release, and NAD availability. In line with a role in inflammation, CD38 appears to also play a critical role in inflammatory processes during autoimmunity, although whether CD38 has pathogenic or regulatory effects varies depending on the disease, immune cell, or animal model analyzed. Given the complexity of the physiology of CD38 it has been difficult to completely understand the biology of this molecule during autoimmune inflammation. In this review, we analyze current knowledge and controversies regarding the role of CD38 during inflammation and autoimmunity and novel molecular tools that may clarify current gaps in the field.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , Autoimunidade , Imunomodulação , Inflamação/etiologia , Inflamação/metabolismo , Glicoproteínas de Membrana/metabolismo , ADP-Ribosil Ciclase 1/química , ADP-Ribosil Ciclase 1/genética , Animais , Apresentação de Antígeno/imunologia , Biomarcadores , Movimento Celular , Citocinas/metabolismo , Suscetibilidade a Doenças , Regulação da Expressão Gênica , Humanos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Fagocitose , Transporte Proteico
17.
Front Immunol ; 11: 352, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32210961

RESUMO

Dengue is the most prevalent and rapidly transmitted mosquito-borne viral disease of humans. One of the fundamental innate immune responses to viral infections includes the processing and release of pro-inflammatory cytokines such as interleukin (IL-1ß and IL-18) through the activation of inflammasome. Dengue virus stimulates the Nod-like receptor (NLRP3-specific inflammasome), however, the specific mechanism(s) by which dengue virus activates the NLRP3 inflammasome is unknown. In this study, we investigated the activation of the NLRP3 inflammasome in endothelial cells (HMEC-1) following dengue virus infection. Our results showed that dengue infection as well as the NS2A and NS2B protein expression increase the NLRP3 inflammasome activation, and further apoptosis-associated speck-like protein containing caspase recruitment domain (ASC) oligomerization, and IL-1ß secretion through caspase-1 activation. Specifically, we have demonstrated that NS2A and NS2B, two proteins of dengue virus that behave as putative viroporins, were sufficient to stimulate the NLRP3 inflammasome complex in lipopolysaccharide (LPS)-primed endothelial cells. In summary, our observations provide insight into the dengue-induced inflammatory response mechanism and highlight the importance of DENV-2 NS2A and NS2B proteins in activation of the NLRP3 inflammasome during dengue virus infection.


Assuntos
Vírus da Dengue/imunologia , Dengue/imunologia , Células Endoteliais/fisiologia , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas não Estruturais Virais/metabolismo , Proteínas Viroporinas/metabolismo , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Caspase 1/metabolismo , Linhagem Celular Transformada , Dengue/virologia , Vírus da Dengue/patogenicidade , Humanos , Imunidade Inata , Interleucina-1beta/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas Viroporinas/genética , Virulência
18.
Proc Natl Acad Sci U S A ; 116(52): 26752-26758, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31811025

RESUMO

Neutrophil extravasation is a migratory event in response to inflammation that depends on cytoskeletal dynamics regulated by myosins. Myosin-1e (Myo1e) is a long-tailed class-I myosin that has not yet been studied in the context of neutrophil-endothelial interactions and neutrophil extravasation. Intravital microscopy of TNFα-inflamed cremaster muscles in Myo1e-deficient mice revealed that Myo1e is required for efficient neutrophil extravasation. Specifically, Myo1e deficiency caused increased rolling velocity, decreased firm adhesion, aberrant crawling, and strongly reduced transmigration. Interestingly, we observed a striking discontinuous rolling behavior termed "intermittent rolling," during which Myo1e-deficient neutrophils showed alternating rolling and jumping movements. Surprisingly, chimeric mice revealed that these effects were due to Myo1e deficiency in leukocytes. Vascular permeability was not significantly altered in Myo1e KO mice. Myo1e-deficient neutrophils showed diminished arrest, spreading, uropod formation, and chemotaxis due to defective actin polymerization and integrin activation. In conclusion, Myo1e critically regulates adhesive interactions of neutrophils with the vascular endothelium and neutrophil extravasation. Myo1e may therefore be an interesting target in chronic inflammatory diseases characterized by excessive neutrophil recruitment.

19.
J Immunol ; 202(4): 1239-1249, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30626693

RESUMO

A single layer of polarized epithelial cells lining the colonic mucosa create a semipermeable barrier indispensable for gut homeostasis. The role of intestinal epithelial cell (IEC) polarization in the maintenance of the epithelial homeostasis and in the development of inflammatory bowel diseases is not fully understood. In this review, now we report that IEC polarization plays an essential role in the regulation of IL-6/STAT3 signaling in the colonic mucosa. Our results demonstrate that autocrine STAT3 activation in IECs is mediated by the apical secretion of IL-6 in response to the basolateral stimulation with IFN-γ. This process relies on the presence of functional, IFN-γ-producing CD4+ T cells. In the absence of basolateral IFN-γ, the compartmentalization of the IL-6/STAT3 signaling is disrupted, and STAT3 is activated mainly in macrophages. Thus, in this study, we show that during inflammation, IFN-γ regulates IL-6/STAT3 signaling in IEC in the colonic mucosa.


Assuntos
Colite/metabolismo , Colo/metabolismo , Interleucina-6/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Animais , Células CACO-2 , Células Cultivadas , Células Epiteliais/metabolismo , Humanos , Inflamação/metabolismo , Interferon gama/metabolismo , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
20.
Dig Dis Sci ; 64(2): 409-420, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30269272

RESUMO

BACKGROUND: Inflammatory bowel diseases (IBD) are multifactorial disorders affecting millions of people worldwide with alarmingly increasing incidences every year. Dysfunction of the intestinal epithelial barrier is associated with IBD pathogenesis, and therapies include anti-inflammatory drugs that enhance intestinal barrier function. However, these drugs often have adverse side effects thus warranting the search for alternatives. Compatible solutes such as bacterial ectoines stabilize cell membranes and proteins. AIM: To unravel whether ectoine (1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid) and homoectoine (4,5,6,7-tetrahydro-2-methyl-1H-(1,3)-diazepine-4-carboxylic acid), a synthetic derivative of ectoine, have beneficial effects during dextran sulfate sodium (DSS)-induced colitis in mice. METHODS/RESULTS: We found that the disease activity index was significantly reduced by both ectoines. DSS-induced edema formation, epithelial permeability, leukocyte recruitment and tissue damage were reduced by ectoine and homoectoine, with the latter having stronger effects. Interestingly, the claudin switch usually observed during colitis (decreased expression of claudin-1 and increased expression of the leaky claudin-2) was completely prevented by homoectoine, whereas ectoine only reduced claudin-2 expression. Concomitantly, only homoectoine ameliorated the drop in transepithelial electrical resistance induced by IFN-γ and TNF-α in Caco-2 cells. Both ectoines inhibited loss of ZO-1 and occludin and prevented IFN-γ/TNF-α-induced increased paracellular flux of 4 kDa FITC-dextran in vitro. Moreover, both ectoines reduced expression of pro-inflammatory cytokines and oxidative stress during colitis. CONCLUSION: While both ectoine and homoectoine have protective effects on the epithelial barrier during inflammation, only homoectoine completely prevented the inflammatory claudin switch in tight junctions. Thus, homoectoine may serve as diet supplement in IBD patients to reach or extend remission.


Assuntos
Diamino Aminoácidos/farmacologia , Claudina-1/efeitos dos fármacos , Claudina-2/efeitos dos fármacos , Colite/patologia , Epitélio/efeitos dos fármacos , Junções Íntimas/efeitos dos fármacos , Animais , Células CACO-2 , Claudina-1/genética , Claudina-1/metabolismo , Claudina-2/genética , Claudina-2/metabolismo , Colite/induzido quimicamente , Colite/metabolismo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Edema , Impedância Elétrica , Humanos , Técnicas In Vitro , Interferon gama/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Estresse Oxidativo/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Junções Íntimas/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...