Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37239830

RESUMO

Binary light-up aptamers are intriguing and emerging tools with potential in different fields. Herein, we demonstrate the versatility of a split Broccoli aptamer system able to turn on the fluorescence signal only in the presence of a complementary sequence. First, an RNA three-way junction harbouring the split system is assembled in an E. coli-based cell-free TX-TL system where the folding of the functional aptamer is demonstrated. Then, the same strategy is introduced into a 'bio-orthogonal' hybrid RNA/DNA rectangle origami characterized by atomic force microscopy: the activation of the split system through the origami self-assembly is demonstrated. Finally, our system is successfully used to detect the femtomoles of a Campylobacter spp. DNA target sequence. Potential applications of our system include the real-time monitoring of the self-assembly of nucleic-acid-based devices in vivo and of the intracellular delivery of therapeutic nanostructures, as well as the in vitro and in vivo detection of different DNA/RNA targets.


Assuntos
Aptâmeros de Nucleotídeos , Brassica , Nanoestruturas , RNA/genética , Brassica/genética , Escherichia coli/genética , Aptâmeros de Nucleotídeos/química , DNA/química , Nanoestruturas/química , Conformação de Ácido Nucleico
2.
Med Mycol ; 58(8): 1102-1113, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-32196549

RESUMO

Candidiasis is a group of opportunistic infections caused by yeast of the genus Candida. The appearance of drug resistance and the adverse effects of current antifungal therapies require the search for new, more efficient therapeutic alternatives. Killer yeasts have aroused as suitable candidates for mining new antifungal compounds. Killer strains secrete antimicrobial proteins named killer toxins, with promissory antifungal activity. Here we found that the killer yeast Wickerhamomyces anomalus Cf20 and its cell-free supernatant (CFS) inhibited six pathogenic strains and one collection strain of Candida spp. The inhibition is mainly mediated by secreted killer toxins and, to a lesser extent, by volatile compounds such as acetic acid and ethyl acetate. A new large killer toxin (>180 kDa) was purified, which exerted 70-74% of the total CFS anti-Candida activity, and the previously described glucanase KTCf20 was inhibitory in a lesser extent as well. In addition, we demonstrated that Cf20 possesses the genes encoding for the ß-1,3-glucanases WaExg1 and WaExg2, proteins with extensively studied antifungal activity, particularly WaExg2. Finally, the 10-fold concentrated CFS exerted a high candidacidal effect at 37°C, completely inhibiting the fungal growth, although the nonconcentrated CFS (RCF 1) had very limited fungistatic activity at this temperature. In conclusion, W. anomalus Cf20 produces different low and high molecular weight compounds with anti-Candida activity that could be used to design new therapies for candidiasis and as a source for novel antimicrobial compounds as well.


Assuntos
Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Fatores Matadores de Levedura/farmacologia , Saccharomycetales/metabolismo , Compostos Orgânicos Voláteis/farmacologia , Antifúngicos/análise , Candida/crescimento & desenvolvimento , Meios de Cultivo Condicionados/química , Meios de Cultivo Condicionados/farmacologia , Relação Dose-Resposta a Droga , Fatores Matadores de Levedura/análise , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Compostos Orgânicos Voláteis/análise , Leveduras/classificação , Leveduras/metabolismo
3.
Curr Genet ; 64(2): 345-351, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28983718

RESUMO

This review attempts to analyze the mechanism of action and immunity of class IIa bacteriocins. These peptides are promising alternative food preservatives and they have a great potential application in medical sciences. Class IIa bacteriocins act on the cytoplasmic membrane of Gram-positive cells dissipating the transmembrane electrical potential by forming pores. However, their toxicity and immunity mechanism remains elusive. Here we discuss the role of the mannose phosphotransferase system (man-PTS) as the receptor for class IIa bacteriocins and the influence of the membrane composition on the activity of these antimicrobial peptides. A model that is consistent with experimental results obtained by different researchers involves the non-specific binding of the bacteriocin to the negatively charged membrane of target bacteria. This step would facilitate a specific binding to the receptor protein, altering its functionality and forming an independent pore in which the bacteriocin is inserted in the membrane. An immunity protein could specifically recognize and block the pore. Bacteriocins function in bacterial ecosystems and energetic costs associated with their production are also discussed. Theoretical models based on solid experimental evidence are vital to understand bacteriocins mechanism of action and to promote new technological developments.


Assuntos
Antibacterianos/química , Bacteriocinas/química , Imunidade/genética , Pediocinas/química , Antibacterianos/imunologia , Antibacterianos/uso terapêutico , Bacteriocinas/imunologia , Conservação de Alimentos , Humanos , Imunidade/efeitos dos fármacos , Modelos Teóricos , Pediocinas/imunologia , Peptídeos/química , Peptídeos/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...