Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Mol Cell Cardiol ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960317

RESUMO

Coronary heart disease (CHD) is a prevalent cardiac disease that causes over 370,000 deaths annually in the USA. In CHD, occlusion of a coronary artery causes ischemia of the cardiac muscle, which results in myocardial infarction (MI). Junctophilin-2 (JPH2) is a membrane protein that ensures efficient calcium handling and proper excitation-contraction coupling. Studies have identified loss of JPH2 due to calpain-mediated proteolysis as a key pathogenic event in ischemia-induced heart failure (HF). Our findings show that calpain-2-mediated JPH2 cleavage yields increased levels of a C-terminal cleaved peptide (JPH2-CTP) in patients with ischemic cardiomyopathy and mice with experimental MI. We created a novel knock-in mouse model by removing residues 479-SPAGTPPQ-486 to prevent calpain-2-mediated cleavage at this site. Functional and molecular assessment of cardiac function post-MI in cleavage site deletion (CSD) mice showed preserved cardiac contractility and reduced dilation, reduced JPH2-CTP levels, attenuated adverse remodeling, improved T-tubular structure, and normalized SR Ca2+-handling. Adenovirus mediated calpain-2 knockdown in mice exhibited similar findings. Pulldown of CTP followed by proteomic analysis revealed valosin-containing protein (VCP) and BAG family molecular chaperone regulator 3 (BAG3) as novel binding partners of JPH2. Together, our findings suggest that blocking calpain-2-mediated JPH2 cleavage may be a promising new strategy for delaying the development of HF following MI.

2.
Curr Protoc ; 4(2): e994, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38372479

RESUMO

Cardiac arrhythmias are a common cardiac condition that might lead to fatal outcomes. A better understanding of the molecular and cellular basis of arrhythmia mechanisms is necessary for the development of better treatment modalities. To aid these efforts, various mouse models have been developed for studying cardiac arrhythmias. Both genetic and surgical mouse models are commonly used to assess the incidence and mechanisms of arrhythmias. Since spontaneous arrhythmias are uncommon in healthy young mice, intracardiac programmed electrical stimulation (PES) can be performed to assess the susceptibility to pacing-induced arrhythmias and uncover the possible presence of a proarrhythmogenic substrate. This procedure is performed by positioning an octopolar catheter inside the right atrium and ventricle of the heart through the right jugular vein. PES can provide insights into atrial and ventricular electrical activity and reveal whether atrial and/or ventricular arrhythmias are present or can be induced. Here, we explain detailed procedures used to perform this technique, possible troubleshooting scenarios, and methods to interpret the results obtained. © 2024 Wiley Periodicals LLC. Basic Protocol: Programmed electrical stimulation in mice.


Assuntos
Arritmias Cardíacas , Técnicas Eletrofisiológicas Cardíacas , Camundongos , Animais , Arritmias Cardíacas/terapia , Ventrículos do Coração , Átrios do Coração , Estimulação Elétrica
3.
J Cardiovasc Aging ; 3(3)2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37538440

RESUMO

Introduction: Heart failure (HF) is the leading cause of death worldwide. Most large and small animal disease models of HF are based on surgical procedures. A common surgical technique to induce HF is transverse aortic constriction (TAC), which induces pressure overload. The conventional TAC (cTAC) procedure is a highly invasive surgery that is associated with severe inflammation and excessive perioperative deaths. Aim: To establish an improved, minimally invasive TAC (mTAC) procedure that does not require thoracotomy. Methods and results: Following anesthesia, mice were intubated, and a small incision was made at the neck and chest. After cutting the sternum about 4 mm, the aortic arch was approached without opening the pleural cavity. A suture was placed between the brachiocephalic artery and the left common carotid artery. This model was associated with low perioperative mortality and a highly reproducible constriction evidenced by an increased right-to-left carotid blood flow velocity ratio in mTAC mice (5.9 ± 0.2) vs. sham controls (1.2 ± 0.1; P < 0.001). mTAC mice exhibited progressive cardiac remodeling during the 8 weeks post-TAC, resulting in reduced left ventricular (LV) contractility, increased LV end-systolic diameter, left atrial enlargement and diastolic dysfunction, and an increased heart weight to tibia length ratio (mTAC: 15.0 ± 0.8 vs. sham: 10.1 ± 0.6; P < 0.01). Conclusion: Our data show that the mTAC procedure yields a highly reproducible phenotype consisting of LV contractile dysfunction and enlargement, combined with left atrial enlargement and diastolic dysfunction. Potential impact of the findings: This model may be used to test the molecular mechanisms underlying atrial remodeling associated with HF development or to evaluate therapeutic strategies to treat these conditions.

4.
J Clin Invest ; 133(19)2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37581942

RESUMO

Chronic kidney disease (CKD) is associated with a higher risk of atrial fibrillation (AF). The mechanistic link between CKD and AF remains elusive. IL-1ß, a main effector of NLR family pyrin domain-containing 3 (NLRP3) inflammasome activation, is a key modulator of conditions associated with inflammation, such as AF and CKD. Circulating IL-1ß levels were elevated in patients with CKD who had AF (versus patients with CKD in sinus rhythm). Moreover, NLRP3 activity was enhanced in atria of patients with CKD. To elucidate the role of NLRP3/IL-1ß signaling in the pathogenesis of CKD-induced AF, Nlrp3-/- and WT mice were subjected to a 2-stage subtotal nephrectomy protocol to induce CKD. Four weeks after surgery, IL-1ß levels in serum and atrial tissue were increased in WT CKD (WT-CKD) mice versus sham-operated WT (WT-sham) mice. The increased susceptibility to pacing-induced AF and the longer AF duration in WT-CKD mice were associated with an abbreviated atrial effective refractory period, enlarged atria, and atrial fibrosis. Genetic inhibition of NLRP3 in Nlrp3-/- mice or neutralizing anti-IL-1ß antibodies effectively reduced IL-1ß levels, normalized left atrial dimensions, and reduced fibrosis and the incidence of AF. These data suggest that CKD creates a substrate for AF development by activating the NLRP3 inflammasome in atria, which is associated with structural and electrical remodeling. Neutralizing IL-1ß antibodies may be beneficial in preventing CKD-induced AF.


Assuntos
Fibrilação Atrial , Insuficiência Renal Crônica , Humanos , Camundongos , Animais , Inflamassomos/metabolismo , Fibrilação Atrial/genética , Fibrilação Atrial/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismo , Átrios do Coração/metabolismo , Interleucina-1beta/metabolismo
5.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36674838

RESUMO

Acute kidney injury (AKI) is associated with an elevated risk of cardiovascular major events and mortality. The pathophysiological mechanisms underlying the complex cardiorenal network interaction remain unresolved. It is known that the presence of AKI and its evolution are significantly associated with an alteration in the anti-aging factor klotho expression. However, it is unknown whether a klotho deficiency might aggravate cardiac damage after AKI. We examined intracellular calcium (Ca2+) handling in native ventricular isolated cardiomyocytes from wild-type (+/+) and heterozygous hypomorphic mice for the klotho gene (+/kl) in which an overdose of folic acid was administered to induce AKI. Twenty-four hours after AKI induction, cardiomyocyte contraction was decreased in mice with the partial deletion of klotho expression (heterozygous hypomorphic klotho named +/kl). This was accompanied by alterations in Ca2+ transients during systole and an impairment of sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2a) function in +/kl mice after AKI induction. Moreover, Ca2+ spark frequency and the incidence of Ca2+ pro-arrhythmic events were greater in cardiomyocytes from heterozygous hypomorphic klotho compared to wild-type mice after AKI. A decrease in klotho expression plays a role in cardiorenal damage aggravating cardiac Ca2+ mishandling after an AKI, providing the basis for future targeted approaches directed to control klotho expression as novel therapeutic strategies to reduce the cardiac burden that affects AKI patients.


Assuntos
Injúria Renal Aguda , Glucuronidase , Camundongos , Animais , Glucuronidase/genética , Glucuronidase/metabolismo , Cálcio/metabolismo , Injúria Renal Aguda/etiologia , Miócitos Cardíacos/metabolismo , Cálcio da Dieta
6.
Artigo em Inglês | MEDLINE | ID: mdl-36337729

RESUMO

Introduction: Postoperative atrial fibrillation (POAF), characterized as AF that arises 1-3 days after surgery, occurs after 30%-40% of cardiac and 10%-20% of non-cardiac surgeries, and is thought to arise due to transient surgery-induced triggers acting on a preexisting vulnerable atrial substrate often associated with inflammation and autonomic nervous system dysfunction. Current experimental studies often rely on human atrial tissue samples, collected during surgery prior to arrhythmia development, or animal models such as sterile pericarditis and atriotomy, which have not been robustly characterized. Aim: To characterize the demographic, electrophysiologic, and inflammatory properties of a POAF mouse model. Methods and Results: A total of 131 wild-type C57BL/6J mice were included in this study. A total of 86 (65.6%) mice underwent cardiothoracic surgery (THOR), which consisted of bi-atrial pericardiectomy with 20 s of aortic cross-clamping; 45 (34.3%) mice underwent a sham procedure consisting of dissection down to but not into the thoracic cavity. Intracardiac pacing, performed 72 h after surgery, was used to assess AF inducibility. THOR mice showed greater AF inducibility (38.4%) compared to Sham mice (17.8%, P = 0.027). Stratifying the cohort by tertiles of age showed that the greatest risk of POAF after THOR compared to Sham occurred in the 12-19-week age group. Stratifying by sex showed that cardiothoracic (CT) surgery increased POAF risk in females but had no significant effect in males. Quantitative polymerase chain reaction of atrial samples revealed upregulation of transforming growth factor beta 1 (TGF-ß1) and interleukin 6 (IL6) and 18 (IL18) expression in THOR compared to Sham mice. Conclusion: Here, we demonstrate that the increased POAF risk associated with CT surgery is most pronounced in female and 12-19-week-old mice, and that the expression of inflammatory cytokines is upregulated in the atria of THOR mice prone to inducible AF.

7.
Biomed Pharmacother ; 153: 113515, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36068956

RESUMO

BACKGROUND: Renal ischemia and reperfusion injury (IRI) is the main cause of acute kidney injury (AKI). AKI induces the development of cardiac hypertrophy (CH) during cardiorenal syndrome (CRS), and cardiomyocyte calcium mishandling though systemic inflammation after 8 days of renal IRI. Klotho has recently been described as an anti-inflammatory component. Given this, Klotho treatment could prevent or attenuate the inflammation, thereby also preventing electrical cardiac outcomes incurred by CRS. The aim of this study was to investigate the therapeutic role of Klotho in CRS after unilateral renal IRI through its anti-inflammatory action. METHODS: We examined renal tissue structure and function, intracellular Ca2+ dynamics in adult ventricular cardiomyocytes and serum cytokine levels from C57BL/6 mice that suffered unilateral renal IRI by occluding the left pedicle for 60 min and reperfusion for 8 days. The animals were treated with recombinant Klotho protein starting from the day of the surgery, then daily for 8 days. RESULTS: After Klotho treatment for 8 days, the left renal tissue remained damaged, however the renal function was restored due to the right kidney tissue preservation. In parallel, Klotho also prevented an increase in serum interleukin (IL-) 6, IL-1ß, and tumor necrosis factor alpha (TNF-α) levels. CH and low cell contraction were also prevented, as well as a decrease in systolic Ca2+ transients and sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2a) activity measured as Ca2+ transient decay, an increase in spontaneous Ca2+ release and the incidence of pro-arrhythmic events. CONCLUSIONS: The Klotho treatment showed promise, playing an important role in the pathophysiology of CRS. We were unable to observe a total renoprotective role of the compound in the model; in turn, a cardioprotective role of Klotho was demonstrated through the prevention of hypertrophy and normalization of the Ca2+ cycle dysfunction of cardiomyocytes. We propose that Klotho acts in the cardiorenal syndrome by systematically preventing inflammation and increased FGF23, alleviating cardiac outcomes.


Assuntos
Injúria Renal Aguda , Síndrome Cardiorrenal , Traumatismo por Reperfusão , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/prevenção & controle , Animais , Síndrome Cardiorrenal/tratamento farmacológico , Síndrome Cardiorrenal/prevenção & controle , Inflamação/metabolismo , Isquemia/metabolismo , Rim , Camundongos , Camundongos Endogâmicos C57BL , Reperfusão , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle
8.
Kidney Int ; 102(2): 261-279, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35513125

RESUMO

Fibroblast growth factor (FGF) 23 is a phosphate-regulating hormone that is elevated in patients with chronic kidney disease and associated with cardiovascular mortality. Experimental studies showed that elevated FGF23 levels induce cardiac hypertrophy by targeting cardiac myocytes via FGF receptor isoform 4 (FGFR4). A recent structural analysis revealed that the complex of FGF23 and FGFR1, the physiologic FGF23 receptor in the kidney, includes soluble α-klotho (klotho) and heparin, which both act as co-factors for FGF23/FGFR1 signaling. Here, we investigated whether soluble klotho, a circulating protein with cardio-protective properties, and heparin, a factor that is routinely infused into patients with kidney failure during the hemodialysis procedure, regulate FGF23/FGFR4 signaling and effects in cardiac myocytes. We developed a plate-based binding assay to quantify affinities of specific FGF23/FGFR interactions and found that soluble klotho and heparin mediate FGF23 binding to distinct FGFR isoforms. Heparin specifically mediated FGF23 binding to FGFR4 and increased FGF23 stimulatory effects on hypertrophic growth and contractility in isolated cardiac myocytes. When repetitively injected into two different mouse models with elevated serum FGF23 levels, heparin aggravated cardiac hypertrophy. We also developed a novel procedure for the synthesis and purification of recombinant soluble klotho, which showed anti-hypertrophic effects in FGF23-treated cardiac myocytes. Thus, soluble klotho and heparin act as independent FGF23 co-receptors with opposite effects on the pathologic actions of FGF23, with soluble klotho reducing and heparin increasing FGF23-induced cardiac hypertrophy. Hence, whether heparin injections during hemodialysis in patients with extremely high serum FGF23 levels contribute to their high rates of cardiovascular events and mortality remains to be studied.


Assuntos
Fator de Crescimento de Fibroblastos 23 , Heparina , Proteínas Klotho , Insuficiência Renal Crônica , Animais , Cardiomegalia , Glucuronidase/metabolismo , Heparina/metabolismo , Humanos , Proteínas Klotho/metabolismo , Camundongos , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/terapia
9.
Int J Mol Sci ; 23(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35216382

RESUMO

BACKGROUND: Acute renal failure (ARF) following renal ischemia-reperfusion (I/R) injury is considered a relevant risk factor for cardiac damage, but the underlying mechanisms, particularly those triggered at cardiomyocyte level, are unknown. METHODS: We examined intracellular Ca2+ dynamics in adult ventricular cardiomyocytes isolated from C57BL/6 mice 7 or 15 days following unilateral renal I/R. RESULTS: After 7 days of I/R, the cell contraction was significantly lower in cardiomyocytes compared to sham-treated mice. It was accompanied by a significant decrease in both systolic Ca2+ transients and sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2a) activity measured as Ca2+ transients decay. Moreover, the incidence of pro-arrhythmic events, measured as the number of Ca2+ sparks, waves or automatic Ca2+ transients, was greater in cardiomyocytes from mice 7 days after I/R than from sham-treated mice. Ca2+ mishandling related to systolic Ca2+ transients and contraction were recovered to sham values 15 days after I/R, but Ca2+ sparks frequency and arrhythmic events remained elevated. CONCLUSIONS: Renal I/R injury causes a cardiomyocyte Ca2+ cycle dysfunction at medium (contraction-relaxation dysfunction) and long term (Ca2+ leak), after 7 and 15 days of renal reperfusion, respectively.


Assuntos
Injúria Renal Aguda/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Isquemia/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Animais , Cálcio da Dieta/metabolismo , Retículo Endoplasmático/metabolismo , Ventrículos do Coração/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Contração Miocárdica/fisiologia , Miócitos Cardíacos/metabolismo , Reperfusão/métodos , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático
10.
Kidney Int ; 101(2): 214-216, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35065687

RESUMO

Chronic kidney disease (CKD) and cardiovascular disease frequently run in parallel. Herein, Soppert et al. provide an interesting meta-analysis of the effects of CKD on cardiac remodeling and/or function in mice based on the model, strain, and duration. The authors sought to determine the most appropriate experimental model to unravel the specific underlying pathologic mechanisms involved in cardiac damage in CKD (single hit) or to investigate new strategies to prevent CKD-induced cardiovascular disease (multifactorial hits representing cardiovascular comorbidities of patients with CKD).


Assuntos
Síndrome Cardiorrenal , Cardiomiopatias , Insuficiência Renal Crônica , Animais , Síndrome Cardiorrenal/etiologia , Síndrome Cardiorrenal/patologia , Cardiomiopatias/etiologia , Modelos Animais de Doenças , Coração/fisiopatologia , Humanos , Camundongos , Insuficiência Renal Crônica/patologia
11.
BMC Med ; 20(1): 14, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-35042527

RESUMO

BACKGROUND: Chronic kidney disease (CKD) is associated with increased propensity for arrhythmias. In this context, ventricular repolarization alterations have been shown to predispose to fatal arrhythmias and sudden cardiac death. Between mineral bone disturbances in CKD patients, increased fibroblast growth factor (FGF) 23 and decreased Klotho are emerging as important effectors of cardiovascular disease. However, the relationship between imbalanced FGF23-Klotho axis and the development of cardiac arrhythmias in CKD remains unknown. METHODS: We carried out a translational approach to study the relationship between the FGF23-Klotho signaling axis and acquired long QT syndrome in CKD-associated uremia. FGF23 levels and cardiac repolarization dynamics were analyzed in patients with dialysis-dependent CKD and in uremic mouse models of 5/6 nephrectomy (Nfx) and Klotho deficiency (hypomorphism), which show very high systemic FGF23 levels. RESULTS: Patients in the top quartile of FGF23 levels had a higher occurrence of very long QT intervals (> 490 ms) than peers in the lowest quartile. Experimentally, FGF23 induced QT prolongation in healthy mice. Similarly, alterations in cardiac repolarization and QT prolongation were observed in Nfx mice and in Klotho hypomorphic mice. QT prolongation in Nfx mice was explained by a significant decrease in the fast transient outward potassium (K+) current (Itof), caused by the downregulation of K+ channel 4.2 subunit (Kv4.2) expression. Kv4.2 expression was also significantly reduced in ventricular cardiomyocytes exposed to FGF23. Enhancing Klotho availability prevented both long QT prolongation and reduced Itof current. Likewise, administration of recombinant Klotho blocked the downregulation of Kv4.2 expression in Nfx mice and in FGF23-exposed cardiomyocytes. CONCLUSION: The FGF23-Klotho axis emerges as a new therapeutic target to prevent acquired long QT syndrome in uremia by minimizing the predisposition to potentially fatal ventricular arrhythmias and sudden cardiac death in patients with CKD.


Assuntos
Síndrome do QT Longo , Insuficiência Renal Crônica , Uremia , Envelhecimento , Animais , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/genética , Glucuronidase/genética , Humanos , Proteínas Klotho , Camundongos , Insuficiência Renal Crônica/complicações , Uremia/complicações
12.
Transl Res ; 243: 60-77, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35077866

RESUMO

Biomarkers of mineral bone disorders (MBD) including phosphorus, fibroblast growth factor (FGF)-23 and Klotho are strongly altered in patients with acute kidney injury (AKI) who have high cardiac outcomes and mortality rates. However, the crosslink between MBD and cardiac damage after an AKI episode still remains unclear. We tested MBD and cardiac biomarkers in an experimental AKI model after 24 or 72 hours of folic acid injection and we analyzed structural cardiac remodeling, intracellular calcium (Ca2+) dynamics in cardiomyocytes and cardiac rhythm. AKI mice presented high levels of FGF-23, phosphorus and cardiac troponin T and exhibited a cardiac hypertrophy phenotype accompanied by an increase in systolic Ca2+ release 24 hours after AKI. Ca2+ transients and contractile dysfunction were reduced 72 hours after AKI while diastolic sarcoplasmic reticulum Ca2+ leak, pro-arrhythmogenic Ca2+ events and ventricular arrhythmias were increased. These cardiac events were linked to the activation of the calcium/calmodulin-dependent kinase II pathway through the increased phosphorylation of ryanodine receptors and phospholamban specific sites after AKI. Cardiac hypertrophy and the altered intracellular Ca2+ dynamics were prevented in transgenic mice overexpressing Klotho after AKI induction. In a translational retrospective longitudinal clinical study, we determined that combining FGF-23 and phosphorus with cardiac troponin T levels achieved a better prediction of mortality in AKI patients at hospital admission. Thus, monitoring MBD and cardiac damage biomarkers could be crucial to prevent mortality in AKI patients. In this setting, Klotho might be considered as a new cardioprotective therapeutic tool to prevent deleterious cardiac events in AKI conditions.


Assuntos
Injúria Renal Aguda , Cálcio , Injúria Renal Aguda/etiologia , Animais , Arritmias Cardíacas , Biomarcadores/metabolismo , Cálcio/metabolismo , Cardiomegalia/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Minerais/metabolismo , Miócitos Cardíacos/fisiologia , Fósforo/metabolismo , Estudos Retrospectivos , Troponina T/metabolismo
13.
Eur Heart J Cardiovasc Pharmacother ; 8(1): 68-76, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-32663251

RESUMO

AIMS: The aim of this study was to determine whether arterial stiffness assessed with the biochemical parameter active matrix metalloproteinase (MMP)-9 and the clinical parameters pulse pressure (PP) and pulse wave velocity predicts the response to spironolactone in resistant hypertension (RH). METHODS AND RESULTS: Ambulatory blood pressure (BP) and active MMP-9 (measured by zymography and ELISA) were measured at baseline, and patients were classified as having pseudo-RH or RH. Patients with RH received spironolactone and the response was determined after 8 weeks by ambulatory BP monitoring: those who achieved BP goals were considered controlled (CRH) and those who did not were considered uncontrolled (UCRH). Plasma active MMP-9 was significantly higher in patients with RH than with pseudo-RH, and correlated with 24 h systolic BP and PP. Receiver operating characteristic analysis indicated that active MMP-9 could predict the response to spironolactone, and its combination with 24 h PP and pulse wave velocity significantly improved this prediction. Moreover, plasma of patients with UCRH induced the MMP-9 expression pathway. CONCLUSION: We propose active MMP-9 as a useful biomarker to identify patients with RH who will not respond to spironolactone. Combining MMP-9 activity with classical arterial stiffness parameters improves the prediction of the clinical response to spironolactone and might contribute to guide the most appropriate therapeutic decisions for patients with RH.


Assuntos
Hipertensão , Rigidez Vascular , Monitorização Ambulatorial da Pressão Arterial , Humanos , Hipertensão/diagnóstico , Hipertensão/tratamento farmacológico , Metaloproteinase 9 da Matriz/uso terapêutico , Análise de Onda de Pulso , Espironolactona/efeitos adversos
14.
Front Physiol ; 12: 775029, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867481

RESUMO

Cardiorenal syndrome (CRS) is a complex disorder that refers to the category of acute or chronic kidney diseases that induce cardiovascular disease, and inversely, acute or chronic heart diseases that provoke kidney dysfunction. There is a close relationship between renal and cardiovascular disease, possibly due to the presence of common risk factors for both diseases. Thus, it is well known that renal diseases are associated with increased risk of developing cardiovascular disease, suffering cardiac events and even mortality, which is aggravated in those patients with end-stage renal disease or who are undergoing dialysis. Recent works have proposed mineral bone disorders (MBD) as the possible link between kidney dysfunction and the development of cardiovascular outcomes. Traditionally, increased serum phosphate levels have been proposed as one of the main factors responsible for cardiovascular damage in kidney patients. However, recent studies have focused on other MBD components such as the elevation of fibroblast growth factor (FGF)-23, a phosphaturic bone-derived hormone, and the decreased expression of the anti-aging factor Klotho in renal patients. It has been shown that increased FGF-23 levels induce cardiac hypertrophy and dysfunction and are associated with increased cardiovascular mortality in renal patients. Decreased Klotho expression occurs as renal function declines. Despite its expression being absent in myocardial tissue, several studies have demonstrated that this antiaging factor plays a cardioprotective role, especially under elevated FGF-23 levels. The present review aims to collect the recent knowledge about the FGF-23-Klotho axis in the connection between kidney and heart, focusing on their specific role as new therapeutic targets in CRS.

15.
Front Physiol ; 12: 632260, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33767635

RESUMO

Fibroblast growth factor-23 (FGF)-23 is a phosphaturic hormone involved in mineral bone metabolism that helps control phosphate homeostasis and reduces 1,25-dihydroxyvitamin D synthesis. Recent data have highlighted the relevant direct FGF-23 effects on the myocardium, and high plasma levels of FGF-23 have been associated with adverse cardiovascular outcomes in humans, such as heart failure and arrhythmias. Therefore, FGF-23 has emerged as a novel biomarker of cardiovascular risk in the last decade. Indeed, experimental data suggest FGF-23 as a direct mediator of cardiac hypertrophy development, cardiac fibrosis and cardiac dysfunction via specific myocardial FGF receptor (FGFR) activation. Therefore, the FGF-23/FGFR pathway might be a suitable therapeutic target for reducing the deleterious effects of FGF-23 on the cardiovascular system. More research is needed to fully understand the intracellular FGF-23-dependent mechanisms, clarify the downstream pathways and identify which could be the most appropriate targets for better therapeutic intervention. This review updates the current knowledge on both clinical and experimental studies and highlights the evidence linking FGF-23 to cardiovascular events. The aim of this review is to establish the specific role of FGF-23 in the heart, its detrimental effects on cardiac tissue and the possible new therapeutic opportunities to block these effects.

16.
J Gerontol A Biol Sci Med Sci ; 76(7): 1198-1205, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-33423057

RESUMO

Aging and chronic kidney disease (CKD) are important interrelated cardiovascular risk (CVR) factors linked to oxidative stress, but this relationship has not been well studied in older adults. We assessed the global oxidative status in an older population with normal to severely impaired renal function. We determined the oxidative status of 93 older adults (mean age 85 years) using multimarker scores. OxyScore was computed as index of systemic oxidative damage by analyzing carbonyl groups, oxidized low-density lipoprotein, 8-hydroxy-2'-deoxyguanosine, and xanthine oxidase activity. AntioxyScore was computed as index of antioxidant defense by analyzing catalase and superoxide dismutase (SOD) activity and total antioxidant capacity. OxyScore and AntioxyScore were higher in subjects with estimated glomerular filtration rate (eGFR) <60 mL/min/1.73 m2 than in peers with eGFR >60 mL/min/1.73 m2, with protein carbonyls, catalase, and SOD activity as major drivers. Older adults with a recent cardiovascular event had similar OxyScore and AntioxyScore as peers with eGFR >60 mL/min/1.73 m2. Multivariate linear regression analysis revealed that both indices were associated with decreased eGFR independently of traditional CVR factors. Interestingly, AntioxyScore was also associated with diuretic treatment, and a more pronounced increase was seen in subjects receiving combination therapy. The associations of AntioxyScore with diuretic treatment and eGFR were mutually independent. In conclusion, eGFR is the major contributor to the imbalance in oxidative stress in this older population. Given the association between oxidative stress, CKD, and CVR, the inclusion of renal function parameters in CVR estimators for older populations, such as the SCORE-OP, might improve their modest performance.


Assuntos
Antioxidantes/metabolismo , Biomarcadores/metabolismo , Diuréticos/efeitos adversos , Estresse Oxidativo , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/fisiopatologia , Idoso , Idoso de 80 Anos ou mais , Estudos Transversais , Feminino , Humanos , Masculino , Espanha
17.
Antioxidants (Basel) ; 9(12)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271910

RESUMO

Oxidized low-density lipoprotein (oxLDL) is associated with cardiac damage and causes injury to multiple cell types. We aimed to investigate the role of oxLDL in ventricular stress. We first examined the association between circulating oxLDL and N-terminal pro-brain natriuretic peptide (NT-proBNP), a marker of myocardial stress, in young subjects (30-50 years) with or without stable coronary artery disease (SCAD). oxLDL and NT-proBNP were significantly higher in subjects at high cardiovascular risk (CVR) than in subjects at low CVR and were associated independently of traditional CVR factors and C-reactive protein. Furthermore, the levels of oxLDL and NT-proBNP were significantly lower in subjects with SCAD than in peers at high CVR. To determine the intracellular mechanisms involved in the cardiac effects of oxLDL, we analyzed the in vitro effect of oxLDL on intracellular Ca2+ handling in adult rat ventricular cardiomyocytes using confocal microscopy. Acute challenge of adult ventricular cardiomyocytes to oxLDL reduced systolic Ca2+ transients and sarcoplasmic reticulum Ca2+ load. Moreover, diastolic spontaneous Ca2+ leak increased significantly after acute exposure to oxLDL. Thus, we demonstrate that oxLDL associates with NT-proBNP in young subjects, and can directly induce Ca2+ mishandling in adult ventricular cardiomyoyctes, predisposing cardiomyocytes to cardiac dysfunction and arrhythmogenicity.

18.
Int J Mol Sci ; 21(22)2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33238586

RESUMO

Risk of cardiovascular disease (CVD) increases considerably as renal function declines in chronic kidney disease (CKD). Nucleotide-binding oligomerization domain-containing protein 1 (NOD1) has emerged as a novel innate immune receptor involved in both CVD and CKD. Following activation, NOD1 undergoes a conformational change that allows the activation of the receptor-interacting serine/threonine protein kinase 2 (RIP2), promoting an inflammatory response. We evaluated whether the genetic deficiency of Nod1 or Rip2 in mice could prevent cardiac Ca2+ mishandling induced by sixth nephrectomy (Nx), a model of CKD. We examined intracellular Ca2+ dynamics in cardiomyocytes from Wild-type (Wt), Nod1-/- and Rip2-/- sham-operated or nephrectomized mice. Compared with Wt cardiomyocytes, Wt-Nx cells showed an impairment in the properties and kinetics of the intracellular Ca2+ transients, a reduction in both cell shortening and sarcoplasmic reticulum Ca2+ load, together with an increase in diastolic Ca2+ leak. Cardiomyocytes from Nod1-/--Nx and Rip2-/--Nx mice showed a significant amelioration in Ca2+ mishandling without modifying the kidney impairment induced by Nx. In conclusion, Nod1 and Rip2 deficiency prevents the intracellular Ca2+ mishandling induced by experimental CKD, unveiling new innate immune targets for the development of innovative therapeutic strategies to reduce cardiac complications in patients with CKD.


Assuntos
Rim/metabolismo , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/genética , Insuficiência Renal Crônica/genética , Animais , Cálcio/metabolismo , Sinalização do Cálcio/genética , Modelos Animais de Doenças , Humanos , Rim/patologia , Camundongos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , NF-kappa B/genética , Proteína Adaptadora de Sinalização NOD1/ultraestrutura , Conformação Proteica , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/ultraestrutura , Insuficiência Renal Crônica/patologia , Retículo Sarcoplasmático/genética , Retículo Sarcoplasmático/patologia
19.
Br J Pharmacol ; 177(20): 4701-4719, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32830863

RESUMO

BACKGROUND AND PURPOSE: Klotho is a membrane-bound or soluble protein, originally identified as an age-suppressing factor and regulator of mineral metabolism. Klotho deficiency is associated with the development of renal disease, but its role in cardiac function in the context of uraemic cardiomyopathy is unknown. EXPERIMENTAL APPROACH: We explored the effects of Klotho on cardiac Ca2+ cycling. We analysed Ca2+ handling in adult cardiomyocytes from Klotho-deficient (kl/kl) mice and from a murine model of 5/6 nephrectomy (Nfx). We also studied the effect of exogenous Klotho supplementation, by chronic recombinant Klotho treatment, or endogenous Klotho overexpression, using transgenic mice overexpressing Klotho (Tg-Kl), on uraemic cardiomyopathy. Hearts from Nfx mice were used to study Ca2+ sensitivity of ryanodine receptors and their phosphorylation state. KEY RESULTS: Cardiomyocytes from kl/kl mice showed decreased amplitude of intracellular Ca2+ transients and cellular shortening together with an increase in pro-arrhythmic Ca2+ events compared with cells from wild-type mice. Cardiomyocytes from Nfx mice exhibited the same impairment in Ca2+ cycling as kl/kl mice. Changes in Nfx cardiomyocytes were explained by higher sensitivity of ryanodine receptors to Ca2+ and their increased phosphorylation at the calmodulin kinase type II and protein kinase A sites. Ca2+ mishandling in Nfx-treated mice was fully prevented by chronic recombinant Klotho administration or transgenic Klotho overexpression. CONCLUSIONS AND IMPLICATIONS: Klotho emerges as an attractive therapeutic tool to improve cardiac Ca2+ mishandling observed in uraemic cardiomyopathy. Strategies that improve Klotho availability are good candidates to protect the heart from functional cardiac alterations in renal disease.


Assuntos
Cálcio , Cardiomiopatias , Animais , Cálcio/metabolismo , Cardiomiopatias/prevenção & controle , Glucuronidase , Proteínas Klotho , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina
20.
Biomolecules ; 10(4)2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32225016

RESUMO

Renal replacement therapy (RRT) is complicated by a chronic state of inflammation and a high mortality risk. However, different RRT modalities can have a selective impact on markers of inflammation and oxidative stress. We evaluated the levels of active matrix metalloproteinase (MMP)-9 in patients undergoing two types of dialysis (high-flux dialysis (HFD) and on-line hemodiafiltration (OL-HDF)) and in kidney transplantation (KT) recipients. Active MMP-9 was measured by zymography and ELISA before (pre-) and after (post-) one dialysis session, and at baseline and follow-up (7 and 14 days, and 1, 3, 6, and 12 months) after KT. Active MMP-9 decreased post-dialysis only in HFD patients, while the levels in OL-HDF patients were already lower before dialysis. Active MMP-9 increased at 7 and 14 days post-KT and was restored to baseline levels three months post-KT, coinciding with an improvement in renal function and plasma creatinine. Active MMP-9 correlated with pulse pressure as an indicator of arterial stiffness both in dialysis patients and KT recipients. In conclusion, active MMP-9 is better controlled in OL-HDF than in HFD and is restored to baseline levels along with stabilization of renal parameters after KT. Active MMP-9 might act as a biomarker of arterial stiffness in RRT.


Assuntos
Metaloproteinase 9 da Matriz/sangue , Terapia de Substituição Renal , Adulto , Idoso , Pressão Sanguínea , Feminino , Hemodiafiltração , Humanos , Transplante de Rim , Masculino , Pessoa de Meia-Idade , Diálise Renal , Inibidor Tecidual de Metaloproteinase-1/sangue , Rigidez Vascular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...