Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Biochem ; 118(11): 4088-4094, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28409871

RESUMO

Klebsiella pneumoniae, BA6753 was cultured from a patient in the Clinical Microbiology Laboratory of Christian Medical College. K. pneumoniae, BA6753 has a multidrug resistance plasmid encoding novel FosA variant-7, fosfomycin resistance enzyme. Minimal side effects and a wide range of bactericidal activity of fosfomycin have resulted in its expanded clinical use that prompts the rise of fosfomycin-resistant strains. At present, there are no effective inhibitors available to conflict the FosA-medicated fosfomycin resistance. To develop effective FosA inhibitors, it is crucial to understand the structural and dynamic properties of resistance enzymes. Hence, the present study focuses on the identification of potent inhibitors that can effectively bind to the fosfomycin resistance enzyme, thus predispose the target to inactivate by the second antibiotic. Initially, a series of active compounds were screened against the resistant enzyme, and the binding affinities were confirmed using docking simulation analysis. For efficient activity, the binding affinity of the resistance enzyme ought to be high with the inhibitor than the fosfomycin drug. Consequently, the enzyme-ligand complex which showed higher binding affinity than the fosfomycin was employed for subsequent analysis. The stability of the top scoring enzyme-ligand complex was further validated using molecular dynamics simulation studies. On the whole, we presume that the compound 19583672 demonstrates a higher binding affinity for the resistance enzyme comparing to other compounds and fosfomycin. We believe that further enhancement of the lead compound can serve as a potential inhibitor against resistance enzyme in drug discovery process. J. Cell. Biochem. 118: 4088-4094, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Proteínas de Bactérias/química , Farmacorresistência Bacteriana , Fosfomicina , Klebsiella pneumoniae/enzimologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Humanos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/isolamento & purificação
2.
EXCLI J ; 12: 462-78, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-26417238

RESUMO

The aggressive nature of estrogen receptor (ER)-negative breast cancer subtype obligates for innovative targeted therapies. The present study aimed to investigate the phytoconstituents and specific anticancer activities of Rheum emodi rhizome, a known food source used locally to treat various ailments. Petroleum ether extracts (hot [PHR] and cold [PCR]) of R. emodi, exhibited significant free radical scavenging potentials through DPPH and reducing power assays, rendering them as good sources of antioxidants. The extracts, PHR and PCR had shown significant (P < 0.05) cancer-cell-specific cytotoxicity in the assayed cells (MDA-MB-231 [breast carcinoma] and WRL-68 [non-tumoral]) at 100 µg/ml, and 50 and 100 µg/ml concentrations respectively. Extracts also induced fervent apoptosis in ER-negative cells (MDA-MB-231) compared to ER-positive subtype (MCF-7), and found to involve CPP32/caspase-3 in its apoptosis induction mechanism. Moreover, extracts had an inevitable potential to inhibit the migration of metastatic breast cancer cells (MDA-MB-231) in vitro. Further, the active principles of extracts were identified through HPLC and GC-MS analysis to reveal major polyphenolics, 4,7-Dimethyl-(octahydro)indolo[4,3-fg]quinolin-10-one, 5-Oxo-isolongifolene, Valencene-2, and other quinone, quinoline and anthraquinone derivatives. The extracts are thus good candidates to target malignant ER-negative breast cancer, and the identified phytoconstituents could be eluted in further exploratory studies for use in dietary-based anti-breast cancer therapies.

3.
Asian Pac J Cancer Prev ; 13(6): 2729-34, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22938449

RESUMO

Despite clinical advances in anticancer therapy, there is still a need for novel anticancer metabolites, with higher efficacy and lesser side effects. Oroxylum indicum (L.) Vent. is a small tree of the Bignoniaceae family which is well known for its food and medicinal properties. In present study, the chemopreventive properties of O. indicum hot and cold non-polar extracts (petroleum ether and chloroform) were investigated with MDA- MB-231 (cancer cells) and WRL-68 (non-tumor cells) by XTT assay. All the extracts, and particularly the petroleum ether hot extract (PHO), exhibited significantly (P<0.05) higher cytotoxicity in MDA-MB-231 when compared to WRL-68 cells. PHO was then tested for apoptosis induction in estrogen receptor (ER)-negative (MDA-MB-231) and ER-positive (MCF-7) breast cancer cells by cellular DNA fragmentation ELISA, where it proved more efficient in the MDA-MB-231 cells. Further, when PHO was tested for anti-metastatic potential in a cell migration inhibition assay, it exhibited beneficial effects. Thus non-polar extracts of O. indicum (especially PHO) can effectively target ER-negative breast cancer cells to induce apoptosis, without harming normal cells by cancer-specific cytotoxicity. Hence, it could be considered as an extract with candidate precursors to possibly harness or alleviate ER-negative breast cancer progression even in advanced stages of malignancy.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Bignoniaceae , Neoplasias da Mama/tratamento farmacológico , Fitoterapia , Extratos Vegetais/farmacologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Quimioprevenção , Feminino , Humanos , Receptores de Estrogênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA