Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 43(11): 804-820, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38279062

RESUMO

HJURP is overexpressed in several cancer types and strongly correlates with patient survival. However, the mechanistic basis underlying the association of HJURP with cancer aggressiveness is not well understood. HJURP promotes the loading of the histone H3 variant, CENP-A, at the centromeric chromatin, epigenetically defining the centromeres and supporting proper chromosome segregation. In addition, HJURP is associated with DNA repair but its function in this process is still scarcely explored. Here, we demonstrate that HJURP is recruited to DSBs through a mechanism requiring chromatin PARylation and promotes epigenetic alterations that favor the execution of DNA repair. Incorporation of HJURP at DSBs promotes turnover of H3K9me3 and HP1, facilitating DNA damage signaling and DSB repair. Moreover, HJURP overexpression in glioma cell lines also affected global structure of heterochromatin independently of DNA damage induction, promoting genome-wide reorganization and assisting DNA damage response. HJURP overexpression therefore extensively alters DNA damage signaling and DSB repair, and also increases radioresistance of glioma cells. Importantly, HJURP expression levels in tumors are also associated with poor response of patients to radiation. Thus, our results enlarge the understanding of HJURP involvement in DNA repair and highlight it as a promising target for the development of adjuvant therapies that sensitize tumor cells to irradiation.


Assuntos
Cromatina , Glioma , Humanos , Centrômero/metabolismo , Proteína Centromérica A/genética , Proteína Centromérica A/metabolismo , Cromatina/genética , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Glioma/genética
2.
J Funct Biomater ; 14(6)2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37367283

RESUMO

Piperine (PIP), a compound found in Piper longum, has shown promise as a potential chemotherapeutic agent for breast cancer. However, its inherent toxicity has limited its application. To overcome this challenge, researchers have developed PIP@MIL-100(Fe), an organic metal-organic framework (MOF) that encapsulates PIP for breast cancer treatment. Nanotechnology offers further treatment options, including the modification of nanostructures with macrophage membranes (MM) to enhance the evasion of the immune system. In this study, the researchers aimed to evaluate the potential of MM-coated MOFs encapsulated with PIP for breast cancer treatment. They successfully synthesized MM@PIP@MIL-100(Fe) through impregnation synthesis. The presence of MM coating on the MOF surface was confirmed through SDS-PAGE analysis, which revealed distinct protein bands. Transmission electron microscopy (TEM) images demonstrated the existence of a PIP@MIL-100(Fe) core with a diameter of around 50 nm, surrounded by an outer lipid bilayer layer measuring approximately 10 nm in thickness. Furthermore, the researchers evaluated the cytotoxicity indices of the nanoparticles against various breast cancer cell lines, including MCF-7, BT-549, SKBR-3, and MDA. The results demonstrated that the MOFs exhibited between 4 and 17 times higher cytotoxicity (IC50) in all four cell lines compared to free PIP (IC50 = 193.67 ± 0.30 µM). These findings suggest that MM@PIP@MIL-100(Fe) holds potential as an effective treatment for breast cancer. The study's outcomes highlight the potential of utilizing MM-coated MOFs encapsulated with PIP as an innovative approach for breast cancer therapy, offering improved cytotoxicity compared to free PIP alone. Further research and development are warranted to explore the clinical translation and optimize the efficacy and safety of this treatment strategy.

3.
Molecules ; 27(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35897874

RESUMO

This work evaluated the metabolic profiling of Inga species with antitumor potential. In addition, we described the antigenotoxicity of polyphenols isolated from I. laurina and a proteomic approach using HepG2 cells after treatment with these metabolites. The in vitro cytotoxic activity against HepG2, HT-29 and T98G cancer cell lines was investigated. The assessment of genotoxic damage was carried out through the comet assay. The ethanolic extract from I. laurina seeds was subjected to bioassay-guided fractionation and the most active fractions were characterized. One bioactive fraction with high cytotoxicity against HT-29 human colon cancer cells (IC50 = 4.0 µg mL-1) was found, and it was characterized as a mixture of p-hydroxybenzoic acid and 4-vinyl-phenol. The I. edulis fruit peel (IC50 = 18.6 µg mL-1) and I. laurina seed (IC50 = 15.2 µg mL-1) extracts had cytotoxic activity against the cell line T98G, and its chemical composition showed a variety of phenolic acids. The chemical composition of this species indicated a wide variety of aromatic acids, flavonoids, tannins, and carotenoids. The high concentration (ranging from 5% to 30%) of these polyphenols in the bioactive extract may be responsible for the antitumor potential. Regarding the proteomic approach, we detected proteins directly related to the elimination of ROS, DNA repair, expression of tumor proteins, and apoptosis.


Assuntos
Fabaceae , Polifenóis , Flavonoides/química , Flavonoides/farmacologia , Humanos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Proteômica
4.
Front Oncol ; 11: 668090, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34211843

RESUMO

Glioblastoma (GBM) is the most lethal and frequent type of brain tumor, leading patients to death in approximately 14 months after diagnosis. GBM treatment consists in surgical removal followed by radio and chemotherapy. However, tumors commonly relapse and the treatment promotes only a slight increase in patient survival. Thus, uncovering the cellular mechanisms involved in GBM resistance is of utmost interest, and the use of cell lines has been shown to be an extremely important tool. In this work, the exploration of RNAseq data from different GBM cell lines revealed different expression signatures, distinctly correlated with the behavior of GBM cell lines regarding proliferation indexes and radio-resistance. U87MG and U138MG cells, which presented expressively reduced proliferation and increased radio-resistance, showed a particular expression signature encompassing enrichment in many extracellular matrix (ECM) and receptor genes. Contrasting, U251MG and T98G cells, that presented higher proliferation and sensibility to radiation, exhibited distinct signatures revealing consistent enrichments for DNA repair processes and although several genes from the ECM-receptor pathway showed up-regulation, enrichments for this pathway were not detected. The ECM-receptor is a master regulatory pathway that is known to impact several cellular processes including: survival, proliferation, migration, invasion, and DNA damage signaling and repair, corroborating the associations we found. Furthermore, searches to The Cancer Genome Atlas (TCGA) repository revealed prognostic correlations with glioma patients for the majority of genes highlighted in the signatures and led to the identification of 31 ECM-receptor genes individually correlated with radiation responsiveness. Interestingly, we observed an association between the number of upregulated genes and survivability greater than 5 years after diagnosis, where almost all the patients that presented 21 or more upregulated genes were deceased before 5 years. Altogether our findings suggest the clinical relevance of ECM-receptor genes signature found here for radiotherapy decision and as biomarkers of glioma prognosis.

5.
Front Cell Infect Microbiol ; 11: 627043, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33718274

RESUMO

This study was aimed at analyzing proto-oncogenic signaling pathway activation in normal oral keratinocytes (NOK-si) and neoplastic cell lines (SCC 25 and Detroit 562) stimulated with metabolites (soluble factors) from single and dual biofilms of Candida albicans and Staphylococcus aureus. Soluble factors (SF) from early (16-h) and mature (36-h) biofilms of C. albicans and S. aureus were collected and incubated with cell cultures, which were subsequently evaluated using gene expression via RT-qPCR, cell viability via AlamarBlueTM, and flow cytometry cell cycle analysis. In general, exposure to the SF of early and mature biofilms from C. albicans and dual species caused a major reduction in NOK-si cell viability and enhanced the sub G0 phase. This led to a decrease in gene expression. However, in this cell line, SF of S. aureus biofilms upregulated the CDKN1A gene followed by the maintenance of cell viability and a significant increase in the G2/M population. For tumor cells, SCC 25 and Detroit 562, the stimuli of SF biofilms upregulated oncogenes such as hRAS and mTOR, as well as Bcl-2 and CDKN1A. SCC 25 and Detroit 562 cells could survive even after 24 h of stimuli from both SF (early and mature). This occurred without significant changes taking place in the cell cycle progression for SCC 25, and with a significant tendency to increase the G2/M phase for Detroit 562. These results point to the fact that metabolites from prevalent clinical fungal and bacterial biofilms, C. albicans and S. aureus, can disrupt the homeostasis of normal and neoplastic oral epithelial cells. This changes proto-oncogenes' expression, specifically PI3KCA, hRAS, mTOR, BRAF, and cell cycle genes CDKN1A and Bcl-2, thus causing a disturbance in cell viability, survival, and the cell cycle profile.


Assuntos
Candida albicans , Staphylococcus aureus , Biofilmes , Candida albicans/genética , Células Epiteliais , Genes cdc , Proto-Oncogenes , Staphylococcus aureus/genética
6.
Phytomedicine ; 48: 179-186, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-30195876

RESUMO

BACKGROUND: Cervical cancer, the fourth most common type of cancer among women worldwide, accounts for approximately 12% of all types of malignancies that affect women. Natural products have contributed significantly to the development of modern therapies; approximately 70% of the drugs available for chemotherapy are naturally based products. PURPOSE: The purpose of this study was to examine the biological activities of nitensidine B (NTB), a guanidinic alkaloid isolated from the leaves of Pterogyne nitens Tul. (Fabaceae) in a cervical cancer cell line. METHODS: In vitro experiments were performed using cervical carcinoma cells immortalized by human papillomavirus type 16 (HPV16, SiHa cells), since epidemiological and molecular studies have demonstrated robust associations between the etiologies of cervical cancer and HPV infection. Cytotoxicity as well as the effect of NTB treatment on intracellular signals of apoptosis, fragmentation of internucleosomal DNA via terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), and levels of apoptosis effectors (Caspase 3/7) were evaluated. In addition, differential proteomic analysis (iTRAQ) and protein validation using western blot were performed. RESULTS: The cytotoxicity of NTB treatment in the SiHa cell line was concentration-dependent, with the minimum inhibitory concentration of 50% of the cells of 40.98 µM. In the TUNEL assay, SiHa cell apoptosis with 3/7 caspase activation was reported at 12 h following treatment. Differential proteomic analysis by iTRAQ demonstrated that proteins of the glycolytic pathway, aldolase A, alpha-enolase, pyruvate kinase, and glyceraldehyde 3-phosphate dehydrogenase were underexpressed. CONCLUSION: These results indicated that NTB could play a role in decreasing glycolysis . Since tumor cells prefer the glycolytic pathway to generate energy, these findings suggest that NTB may be a reliable model for the study of human cervical cancer cell lines immortalized by HPV16, however more experiments can be performed.


Assuntos
Apoptose/efeitos dos fármacos , Glicólise , Guanidinas/farmacologia , Papillomavirus Humano 16 , Neoplasias do Colo do Útero/virologia , Caspase 3/metabolismo , Caspase 7/metabolismo , Linhagem Celular Tumoral , Fabaceae/química , Feminino , Humanos , Folhas de Planta/química , Proteoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...