Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 36(7): 1338-49, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27150391

RESUMO

OBJECTIVE: Cyclosporin A (CsA) is an immunosuppressant commonly used to prevent organ rejection but is associated with hyperlipidemia and an increased risk of cardiovascular disease. Although studies suggest that CsA-induced hyperlipidemia is mediated by inhibition of low-density lipoprotein receptor (LDLr)-mediated lipoprotein clearance, the data supporting this are inconclusive. We therefore sought to investigate the role of the LDLr in CsA-induced hyperlipidemia by using Ldlr-knockout mice (Ldlr(-/-)). APPROACH AND RESULTS: Ldlr(-/-) and wild-type (wt) C57Bl/6 mice were treated with 20 mg/kg per d CsA for 4 weeks. On a chow diet, CsA caused marked dyslipidemia in Ldlr(-/-) but not in wt mice. Hyperlipidemia was characterized by a prominent increase in plasma very low-density lipoprotein and intermediate-density lipoprotein/LDL with unchanged plasma high-density lipoprotein levels, thus mimicking the dyslipidemic profile observed in humans. Analysis of specific lipid species by liquid chromatography-tandem mass spectrometry suggested a predominant effect of CsA on increased very low-density lipoprotein-IDL/LDL lipoprotein number rather than composition. Mechanistic studies indicated that CsA did not alter hepatic lipoprotein production but did inhibit plasma clearance and hepatic uptake of [(14)C]cholesteryl oleate and glycerol tri[(3)H]oleate-double-labeled very low-density lipoprotein-like particles. Further studies showed that CsA inhibited plasma lipoprotein lipase activity and increased levels of apolipoprotein C-III and proprotein convertase subtilisin/kexin type 9. CONCLUSIONS: We demonstrate that CsA does not cause hyperlipidemia via direct effects on the LDLr. Rather, LDLr deficiency plays an important permissive role for CsA-induced hyperlipidemia, which is associated with abnormal lipoprotein clearance, decreased lipoprotein lipase activity, and increased levels of apolipoprotein C-III and proprotein convertase subtilisin/kexin type 9. Enhancing LDLr and lipoprotein lipase activity and decreasing apolipoprotein C-III and proprotein convertase subtilisin/kexin type 9 levels may therefore provide attractive treatment targets for patients with hyperlipidemia receiving CsA.


Assuntos
Ciclosporina , Hiperlipidemias/metabolismo , Metabolismo dos Lipídeos , Receptores de LDL/metabolismo , Animais , Apolipoproteína C-III/sangue , Biomarcadores/sangue , Ésteres do Colesterol/metabolismo , Modelos Animais de Doenças , Feminino , Predisposição Genética para Doença , Hiperlipidemias/sangue , Hiperlipidemias/induzido quimicamente , Hiperlipidemias/genética , Lipase Lipoproteica/sangue , Lipoproteínas HDL/sangue , Lipoproteínas IDL/sangue , Lipoproteínas VLDL/sangue , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Pró-Proteína Convertase 9/sangue , Receptores de LDL/deficiência , Receptores de LDL/genética , Fatores de Tempo , Trioleína/metabolismo
2.
PLoS One ; 9(10): e111186, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25347775

RESUMO

Dynamins are fission proteins that mediate endocytic and exocytic membrane events and are pharmacological therapeutic targets. These studies investigate whether dynamin II regulates constitutive protein secretion and show for the first time that pharmacological inhibition of dynamin decreases secretion of apolipoprotein E (apoE) and several other proteins constitutively secreted from primary human macrophages. Inhibitors that target recruitment of dynamin to membranes (MiTMABs) or directly target the GTPase domain (Dyngo or Dynole series), dose- and time- dependently reduced the secretion of apoE. SiRNA oligo's targeting all isoforms of dynamin II confirmed the involvement of dynamin II in apoE secretion. Inhibition of secretion was not mediated via effects on mRNA or protein synthesis. 2D-gel electrophoresis showed that inhibition occurred after apoE was processed and glycosylated in the Golgi and live cell imaging showed that inhibited secretion was associated with reduced post-Golgi movement of apoE-GFP-containing vesicles. The effect was not restricted to macrophages, and was not mediated by the effects of the inhibitors on microtubules. Inhibition of dynamin also altered the constitutive secretion of other proteins, decreasing the secretion of fibronectin, matrix metalloproteinase 9, Chitinase-3-like protein 1 and lysozyme but unexpectedly increasing the secretion of the inflammatory mediator cyclophilin A. We conclude that pharmacological inhibitors of dynamin II modulate the constitutive secretion of macrophage apoE as a class effect, and that their capacity to modulate protein secretion may affect a range of biological processes.


Assuntos
Apolipoproteínas E/metabolismo , Dinamina II/antagonistas & inibidores , Exocitose/efeitos dos fármacos , Macrófagos/metabolismo , Acrilamidas/farmacologia , Animais , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Dinamina II/genética , Dinamina II/metabolismo , Células Hep G2 , Humanos , Indóis/farmacologia , Macrófagos/efeitos dos fármacos , Via Secretória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA